O0430HMA14
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0186
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.558 | 0.09 | 10 | 0.2938 |
0.1782 | 0.18 | 20 | 0.1518 |
0.1488 | 0.27 | 30 | 0.1634 |
0.1562 | 0.36 | 40 | 0.1549 |
0.1523 | 0.45 | 50 | 0.1528 |
0.1532 | 0.54 | 60 | 0.1495 |
0.1487 | 0.63 | 70 | 0.1476 |
0.1493 | 0.73 | 80 | 0.1547 |
0.148 | 0.82 | 90 | 0.1499 |
0.1487 | 0.91 | 100 | 0.1516 |
0.1516 | 1.0 | 110 | 0.1509 |
0.1464 | 1.09 | 120 | 0.1491 |
0.2792 | 1.18 | 130 | 2.5830 |
1.2568 | 1.27 | 140 | 0.1547 |
0.1824 | 1.36 | 150 | 0.1368 |
0.341 | 1.45 | 160 | 0.3759 |
0.1732 | 1.54 | 170 | 0.0789 |
0.444 | 1.63 | 180 | 0.0761 |
0.0692 | 1.72 | 190 | 0.0591 |
0.0553 | 1.81 | 200 | 0.0601 |
0.0576 | 1.9 | 210 | 0.0560 |
0.0578 | 1.99 | 220 | 0.0525 |
0.0498 | 2.08 | 230 | 0.0459 |
0.0412 | 2.18 | 240 | 0.0334 |
0.0359 | 2.27 | 250 | 0.0302 |
0.0315 | 2.36 | 260 | 0.0261 |
0.0254 | 2.45 | 270 | 0.0243 |
0.0179 | 2.54 | 280 | 0.0219 |
0.0251 | 2.63 | 290 | 0.0211 |
0.0226 | 2.72 | 300 | 0.0195 |
0.0216 | 2.81 | 310 | 0.0197 |
0.0231 | 2.9 | 320 | 0.0186 |
0.0224 | 2.99 | 330 | 0.0186 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/O0430HMA14
Base model
allenai/OLMo-1B