O0430HMA10
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0559
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.0895 | 0.09 | 10 | 0.3407 |
0.2019 | 0.18 | 20 | 0.1639 |
0.1559 | 0.27 | 30 | 0.1596 |
0.1531 | 0.36 | 40 | 0.1526 |
0.1488 | 0.45 | 50 | 0.1484 |
0.1528 | 0.54 | 60 | 0.1526 |
0.15 | 0.63 | 70 | 0.1495 |
0.138 | 0.73 | 80 | 0.2258 |
0.146 | 0.82 | 90 | 0.1218 |
0.3233 | 0.91 | 100 | 0.1742 |
0.1671 | 1.0 | 110 | 0.1332 |
0.1632 | 1.09 | 120 | 0.2910 |
0.2837 | 1.18 | 130 | 0.1909 |
1.069 | 1.27 | 140 | 0.2440 |
0.2163 | 1.36 | 150 | 0.1222 |
0.1871 | 1.45 | 160 | 0.1631 |
0.7226 | 1.54 | 170 | 0.1309 |
0.0921 | 1.63 | 180 | 0.0873 |
0.082 | 1.72 | 190 | 0.0736 |
0.1127 | 1.81 | 200 | 0.0965 |
0.0802 | 1.9 | 210 | 0.0768 |
0.0716 | 1.99 | 220 | 0.0680 |
0.0665 | 2.08 | 230 | 0.0614 |
0.0603 | 2.18 | 240 | 0.0804 |
0.0642 | 2.27 | 250 | 0.0606 |
0.0639 | 2.36 | 260 | 0.0592 |
0.0545 | 2.45 | 270 | 0.0581 |
0.0525 | 2.54 | 280 | 0.0552 |
0.0557 | 2.63 | 290 | 0.0597 |
0.0586 | 2.72 | 300 | 0.0551 |
0.0576 | 2.81 | 310 | 0.0552 |
0.0584 | 2.9 | 320 | 0.0558 |
0.0608 | 2.99 | 330 | 0.0559 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/O0430HMA10
Base model
allenai/OLMo-1B