O0428HMA8
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0553
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7563 | 0.09 | 10 | 0.1800 |
0.1866 | 0.18 | 20 | 0.1584 |
0.1527 | 0.27 | 30 | 0.1644 |
0.1553 | 0.36 | 40 | 0.1529 |
0.1503 | 0.45 | 50 | 0.1481 |
0.15 | 0.54 | 60 | 0.1472 |
0.1486 | 0.63 | 70 | 0.1470 |
0.1491 | 0.73 | 80 | 0.1499 |
0.1464 | 0.82 | 90 | 0.1489 |
0.1483 | 0.91 | 100 | 0.1503 |
0.1502 | 1.0 | 110 | 0.1495 |
0.1424 | 1.09 | 120 | 0.1640 |
0.1267 | 1.18 | 130 | 0.1005 |
0.131 | 1.27 | 140 | 0.1975 |
0.1214 | 1.36 | 150 | 0.0764 |
0.0707 | 1.45 | 160 | 0.0716 |
0.0616 | 1.54 | 170 | 0.0617 |
0.0663 | 1.63 | 180 | 0.0601 |
0.7161 | 1.72 | 190 | 4.6913 |
0.5982 | 1.81 | 200 | 0.0666 |
0.0729 | 1.9 | 210 | 0.0584 |
0.0632 | 1.99 | 220 | 0.0565 |
0.0603 | 2.08 | 230 | 0.0594 |
0.0543 | 2.18 | 240 | 0.0587 |
0.0564 | 2.27 | 250 | 0.0580 |
0.0604 | 2.36 | 260 | 0.0579 |
0.0544 | 2.45 | 270 | 0.0565 |
0.0526 | 2.54 | 280 | 0.0556 |
0.0548 | 2.63 | 290 | 0.0574 |
0.0568 | 2.72 | 300 | 0.0552 |
0.0568 | 2.81 | 310 | 0.0551 |
0.0578 | 2.9 | 320 | 0.0553 |
0.0604 | 2.99 | 330 | 0.0553 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/O0428HMA8
Base model
allenai/OLMo-1B