O0428HMA22
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0467
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4529 | 0.09 | 10 | 0.1637 |
0.1607 | 0.18 | 20 | 0.1594 |
0.1523 | 0.27 | 30 | 0.1619 |
0.1562 | 0.36 | 40 | 0.1498 |
0.1516 | 0.45 | 50 | 0.1536 |
0.1533 | 0.54 | 60 | 0.1494 |
0.1507 | 0.63 | 70 | 0.1481 |
0.1494 | 0.73 | 80 | 0.1566 |
0.1481 | 0.82 | 90 | 0.1476 |
0.1486 | 0.91 | 100 | 0.1493 |
0.1506 | 1.0 | 110 | 0.1496 |
0.1464 | 1.09 | 120 | 0.1483 |
0.1465 | 1.18 | 130 | 0.1523 |
0.148 | 1.27 | 140 | 0.1493 |
0.1512 | 1.36 | 150 | 0.1502 |
0.147 | 1.45 | 160 | 0.1495 |
0.1453 | 1.54 | 170 | 0.1470 |
0.1477 | 1.63 | 180 | 0.1460 |
0.1476 | 1.72 | 190 | 0.1500 |
0.145 | 1.81 | 200 | 0.1482 |
0.1483 | 1.9 | 210 | 0.1451 |
0.139 | 1.99 | 220 | 0.1258 |
0.0991 | 2.08 | 230 | 0.0957 |
0.1018 | 2.18 | 240 | 0.0760 |
0.0642 | 2.27 | 250 | 0.0672 |
0.0644 | 2.36 | 260 | 0.0607 |
0.0533 | 2.45 | 270 | 0.0558 |
0.0475 | 2.54 | 280 | 0.0542 |
0.0509 | 2.63 | 290 | 0.0499 |
0.0512 | 2.72 | 300 | 0.0486 |
0.0478 | 2.81 | 310 | 0.0488 |
0.0466 | 2.9 | 320 | 0.0471 |
0.0504 | 2.99 | 330 | 0.0467 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/O0428HMA22
Base model
allenai/OLMo-1B