O0428HMA2
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0559
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6301 | 0.09 | 10 | 0.1786 |
0.1808 | 0.18 | 20 | 0.1584 |
0.151 | 0.27 | 30 | 0.1656 |
0.1571 | 0.36 | 40 | 0.1538 |
0.1506 | 0.45 | 50 | 0.1473 |
0.1503 | 0.54 | 60 | 0.1472 |
0.1495 | 0.63 | 70 | 0.1470 |
0.1494 | 0.73 | 80 | 0.1533 |
0.1454 | 0.82 | 90 | 0.1454 |
0.2027 | 0.91 | 100 | 0.3378 |
0.6197 | 1.0 | 110 | 0.1547 |
0.1558 | 1.09 | 120 | 0.1495 |
0.151 | 1.18 | 130 | 0.2320 |
0.1812 | 1.27 | 140 | 0.1292 |
0.1265 | 1.36 | 150 | 0.0858 |
0.0775 | 1.45 | 160 | 0.0811 |
1.561 | 1.54 | 170 | 3.8411 |
0.6605 | 1.63 | 180 | 0.0889 |
0.9093 | 1.72 | 190 | 0.1577 |
0.1072 | 1.81 | 200 | 0.1386 |
0.3511 | 1.9 | 210 | 0.0862 |
0.0683 | 1.99 | 220 | 0.0609 |
0.0628 | 2.08 | 230 | 0.0583 |
0.0574 | 2.18 | 240 | 0.0583 |
0.0576 | 2.27 | 250 | 0.0589 |
0.064 | 2.36 | 260 | 0.0615 |
0.0555 | 2.45 | 270 | 0.0571 |
0.0548 | 2.54 | 280 | 0.0564 |
0.0563 | 2.63 | 290 | 0.0577 |
0.0583 | 2.72 | 300 | 0.0558 |
0.058 | 2.81 | 310 | 0.0555 |
0.0589 | 2.9 | 320 | 0.0558 |
0.0621 | 2.99 | 330 | 0.0559 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/O0428HMA2
Base model
allenai/OLMo-1B