Edit model card

Wav2Vec2_xls_r_300m_hi_final

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the 'Openslr Multilingual and code-switching ASR challenge' dataset and 'mozilla-foundation/common_voice_7_0' dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3035
  • Wer: 0.3137
  • Cer: 0.0972

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.9821 0.64 400 0.5059 0.4783 0.1573
0.6861 1.28 800 0.4201 0.4247 0.1356
0.585 1.92 1200 0.3797 0.3811 0.1210
0.5193 2.56 1600 0.3577 0.3652 0.1152
0.4583 3.21 2000 0.3422 0.3519 0.1111
0.4282 3.85 2400 0.3261 0.3450 0.1071
0.3951 4.49 2800 0.3201 0.3325 0.1048
0.3619 5.13 3200 0.3167 0.3296 0.1030
0.345 5.77 3600 0.3157 0.3210 0.1013
0.338 6.41 4000 0.3051 0.3143 0.0982
0.3155 7.05 4400 0.3059 0.3154 0.0986
0.3057 7.69 4800 0.3035 0.3137 0.0972

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.3
  • Tokenizers 0.11.0
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.