BERT_B02 / README.md
LazzeKappa's picture
End of training
962895b
|
raw
history blame
1.92 kB
metadata
license: apache-2.0
base_model: distilbert-base-multilingual-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: BERT_B02
    results: []

BERT_B02

This model is a fine-tuned version of distilbert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5303
  • Precision: 0.5901
  • Recall: 0.6373
  • F1: 0.6128
  • Accuracy: 0.8529

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.8874 1.0 47 0.7667 0.4130 0.364 0.3870 0.7897
0.5169 2.0 94 0.5512 0.5390 0.608 0.5714 0.8469
0.3529 3.0 141 0.5238 0.5913 0.6173 0.6040 0.8542
0.2603 4.0 188 0.5243 0.5926 0.6227 0.6073 0.8521
0.2134 5.0 235 0.5303 0.5901 0.6373 0.6128 0.8529

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3