Edit model card

aligner-v1-llama3-01

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4361
  • Rewards/chosen: -0.0331
  • Rewards/rejected: -0.0349
  • Rewards/accuracies: 0.8333
  • Rewards/margins: 0.0018
  • Logps/rejected: -0.3493
  • Logps/chosen: -0.3313
  • Logits/rejected: -1.5592
  • Logits/chosen: -1.5485
  • Nll Loss: 1.3699
  • Log Odds Ratio: -0.6618
  • Log Odds Chosen: 0.0646

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
2.8628 0.2105 15 2.7068 -0.1219 -0.1183 0.0 -0.0036 -1.1830 -1.2191 -1.8565 -1.8340 2.6349 -0.7190 -0.0509
2.1044 0.4211 30 2.0553 -0.0702 -0.0687 0.1667 -0.0015 -0.6871 -0.7024 -1.6352 -1.6218 1.9845 -0.7082 -0.0296
1.6915 0.6316 45 1.6323 -0.0431 -0.0436 0.8333 0.0006 -0.4364 -0.4305 -1.6833 -1.6715 1.5639 -0.6842 0.0185
1.4279 0.8421 60 1.4361 -0.0331 -0.0349 0.8333 0.0018 -0.3493 -0.3313 -1.5592 -1.5485 1.3699 -0.6618 0.0646

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Ksgk-fy/aligner-v1-llama3-01

Adapter
(533)
this model