Edit model card

Hub-Report-1705947362

This model is a fine-tuned version of sentence-transformers/all-mpnet-base-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1734
  • F1: 0.7779
  • Roc Auc: 0.8689
  • Accuracy: 0.7658

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 13

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
No log 1.0 297 0.2953 0.0397 0.5100 0.0203
0.3539 2.0 594 0.2267 0.5719 0.7107 0.4329
0.3539 3.0 891 0.1932 0.7410 0.8216 0.6608
0.2053 4.0 1188 0.1851 0.7363 0.8289 0.6823
0.2053 5.0 1485 0.1759 0.7659 0.8560 0.7392
0.1532 6.0 1782 0.1725 0.7756 0.8670 0.7633
0.1178 7.0 2079 0.1734 0.7779 0.8689 0.7658
0.1178 8.0 2376 0.1802 0.7587 0.8580 0.7481
0.0964 9.0 2673 0.1828 0.7669 0.8649 0.7595
0.0964 10.0 2970 0.1835 0.7625 0.8617 0.7532
0.083 11.0 3267 0.1849 0.7681 0.8646 0.7595
0.0723 12.0 3564 0.1886 0.7604 0.8603 0.7519
0.0723 13.0 3861 0.1901 0.7606 0.8599 0.7494

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
3,334
Safetensors
Model size
109M params
Tensor type
F32
·
Inference API

Model tree for Kevinger/Hub-Report-1705947362

Finetuned
(165)
this model