|
--- |
|
language: en |
|
license: mit |
|
library_name: transformers |
|
tags: |
|
- summarization |
|
- bart |
|
datasets: ccdv/arxiv-summarization |
|
model-index: |
|
- name: BARTxiv |
|
results: |
|
- task: |
|
type: summarization |
|
dataset: |
|
name: arxiv-summarization |
|
type: ccdv/arxiv-summarization |
|
split: validation |
|
metrics: |
|
- type: rouge1 |
|
value: 41.70204016592095 |
|
- type: rouge2 |
|
value: 15.134827404979639 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# BARTxiv |
|
|
|
See the model implementation [here](https://interrsect.web.app). |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the [arxiv-summarization](https://huggingface.co/datasets/ccdv/arxiv-summarization) dataset. |
|
It achieves the following results on the validation set: |
|
- Loss: 0.86 |
|
- Rouge1: 41.70 |
|
- Rouge2: 15.13 |
|
- Rougel: 22.85 |
|
- Rougelsum: 37.77 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-6 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adafactor |
|
- num_epochs: 9 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 1.24 | 1.0 | 1073 | 1.24 | 38.32 | 12.80 | 20.55 | 34.50 | |
|
| 1.04 | 2.0 | 2146 | 1.04 | 39.65 | 13.74 | 21.28 | 35.83 | |
|
| 0.979 | 3.0 | 3219 | 0.98 | 40.19 | 14.30 | 21.87 | 36.38 | |
|
| 0.970 | 4.0 | 4292 | 0.97 | 40.87 | 14.44 | 22.14 | 36.89 | |
|
| 0.918 | 5.0 | 5365 | 0.92 | 41.17 | 14.94 | 22.54 | 37.40 | |
|
| 0.901 | 6.0 | 6438 | 0.90 | 41.02 | 14.65 | 22.46 | 37.05 | |
|
| 0.889 | 7.0 | 7511 | 0.89 | 41.32 | 15.09 | 22.64 | 37.42 | |
|
| 0.900 | 8.0 | 8584 | 0 .90 | 41.23 | 15.02 | 22.67 | 37.28 | |
|
| 0.869 | 9.0 | 9657 | 0.87 | 41.70 | 15.13 | 22.85 | 37.77 | |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.13.1 |