metadata
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
base_model: bert-base-uncased
model-index:
- name: bert-base-uncased-mrpc
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- type: accuracy
value: 0.8578431372549019
name: Accuracy
- type: f1
value: 0.9023569023569024
name: F1
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: mrpc
split: validation
metrics:
- type: accuracy
value: 0.8578431372549019
name: Accuracy
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWViZGIwMDMxMjA0ZTMwMWY3ZWU4YzA4ZjNjOWMyM2I0NGE2ZDZkMjg3MDdiZDUwYjEzNjMwYzZiODBhMzBiYyIsInZlcnNpb24iOjF9.8xsat2msiKS4S7KplRkr9xaLWCwMSbUNEXxZ3FgFXfIB6DhXWLoDdoc5X6GNux2ipDEdgHjqI8FMzAJURaD0DQ
- type: precision
value: 0.8507936507936508
name: Precision
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGE4ZTkyMzc1NTA4MjQxZGU4NjY5NmMyODI3ZWI0NGU4YWUzNmI3YzFhOTU0MDRkZWIzNzkxNTU0Y2ZhYTFmYiIsInZlcnNpb24iOjF9.f7odSB_ZEGkjTbewzM9SW7G5C324Hpuo6Z01uOr7OENrLPDC3z0OwgtoQmNj7pHVcU0fFp9FyRRiTowE6U4SAg
- type: recall
value: 0.9605734767025089
name: Recall
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWVjYjhhNzJlYjdlMWI3Y2RmODkzZDQyYTBhMzdkY2NlNGE4OWM3YzY5MjBiZjMwNWY3ZmIwODk5ZDFkMjI4YSIsInZlcnNpb24iOjF9.yPZxpm9l7ctYxLEBuN0lOukQnT8ETLsBA4EzuqY5EJDuK6FZCqKeb1TKZ_qtthSQpI4n1366LzqSXeU8nZ3tBw
- type: auc
value: 0.8931260592926008
name: AUC
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjkwN2RmOTlmZDRlZTQ3ZTE1NjBjNTQxMDNkOTExMzQ5MjkyNjY1ZDFjZmQ4MDE0NmZlNDBhMjQzMTRhN2IxZCIsInZlcnNpb24iOjF9.e_gccDrQXc6s8fASle5wnZWc02ihuqBdicoDvehQO79nt-YHdm1oK11llTiUULReIOxTsOmFKCattvztyqOUCQ
- type: f1
value: 0.9023569023569024
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWNiOTUyMzEzMTRkNzBmOTdiMTNhOGQ0NzgyZjFiNjc2NmE1Y2FlOWM0NzdmNGM5ZGNmZTUyMzljZGRiZjNhOSIsInZlcnNpb24iOjF9.rxUf2PMqTz3N-tvfIo6L19RKTzmIjYRoxm1BEzrzNX1w-FATF69X2WZlqjAyB2xhMrSikvmsh7QryYmZn-P6AA
- type: loss
value: 0.5572634935379028
name: loss
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWIyMzZmMGYwMjEyMGFmOGRjNGE3YjQ5MmU5NGZjYmJjZGFiNTA4Mzk0MTAxNDQyYTk5YzE2OTA5YjlmODgzMCIsInZlcnNpb24iOjF9.bgoIjSqw70DaRXJ9LL3_dP33C0WPAZq5uMlencN-wOpjNes2v0VcCW1felmd_0JRwSbWI7v1eP2YYPiQg-a0AQ
bert-base-uncased-mrpc
This model is a fine-tuned version of bert-base-uncased on the GLUE MRPC dataset. It achieves the following results on the evaluation set:
- Loss: 0.5572
- Accuracy: 0.8578
- F1: 0.9024
- Combined Score: 0.8801
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
No log | 1.0 | 230 | 0.4111 | 0.8088 | 0.8704 | 0.8396 |
No log | 2.0 | 460 | 0.3762 | 0.8480 | 0.8942 | 0.8711 |
0.4287 | 3.0 | 690 | 0.5572 | 0.8578 | 0.9024 | 0.8801 |
0.4287 | 4.0 | 920 | 0.6087 | 0.8554 | 0.8977 | 0.8766 |
0.1172 | 5.0 | 1150 | 0.6524 | 0.8456 | 0.8901 | 0.8678 |
Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1