Jerado's picture
End of training
9180731 verified
---
language:
- en
license: apache-2.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
base_model: roberta-large
datasets:
- Jerado/enron_intangibles_ner
metrics:
- precision
- recall
- f1
widget:
- text: Negotiated rates in these types of deals (basis for new builds) have been
allowed to stand for the life of the contracts, in the case of Kern River and
Mojave.
- text: It seems that there is a single significant policy concern for the ASIC policy
committee.
- text: 'The appropriate price is in Enpower, but the revenue has never appeared (Deal
#590753).'
- text: FYI, to me, a prepayment for a service contract would generally be amortized
over the life of the contract.
- text: 'From: d..steffes @ enron.com To: john.shelk @ enron.com, l..nicolay @ enron.com,
richard.shapiro @ enron.com, sarah.novosel @ enron.com Subject: Southern Co.''s
Testimony The first order of business is getting the cost / benefit analysis done.'
pipeline_tag: token-classification
model-index:
- name: SpanMarker with roberta-large on Jerado/enron_intangibles_ner
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: Unknown
type: Jerado/enron_intangibles_ner
split: test
metrics:
- type: f1
value: 0.4390243902439024
name: F1
- type: precision
value: 0.42857142857142855
name: Precision
- type: recall
value: 0.45
name: Recall
---
# SpanMarker with roberta-large on Jerado/enron_intangibles_ner
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [Jerado/enron_intangibles_ner](https://huggingface.co/datasets/Jerado/enron_intangibles_ner) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [roberta-large](https://huggingface.co/roberta-large) as the underlying encoder.
## Model Details
### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [roberta-large](https://huggingface.co/roberta-large)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 6 words
- **Training Dataset:** [Jerado/enron_intangibles_ner](https://huggingface.co/datasets/Jerado/enron_intangibles_ner)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
### Model Labels
| Label | Examples |
|:-----------|:--------------------------------------------|
| Intangible | "deal", "sample EES deal", "Enpower system" |
## Evaluation
### Metrics
| Label | Precision | Recall | F1 |
|:-----------|:----------|:-------|:-------|
| **all** | 0.4286 | 0.45 | 0.4390 |
| Intangible | 0.4286 | 0.45 | 0.4390 |
## Uses
### Direct Use for Inference
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("It seems that there is a single significant policy concern for the ASIC policy committee.")
```
### Downstream Use
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
```python
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")
```
</details>
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:----------------------|:----|:--------|:----|
| Sentence length | 1 | 19.8706 | 216 |
| Entities per sentence | 0 | 0.1865 | 6 |
### Training Hyperparameters
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 11
- mixed_precision_training: Native AMP
### Training Results
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:-------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 3.3557 | 500 | 0.0075 | 0.4444 | 0.1667 | 0.2424 | 0.9753 |
| 6.7114 | 1000 | 0.0084 | 0.5714 | 0.3333 | 0.4211 | 0.9793 |
| 10.0671 | 1500 | 0.0098 | 0.6111 | 0.4583 | 0.5238 | 0.9815 |
### Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.40.0
- PyTorch: 2.2.1+cu121
- Datasets: 2.19.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->