Edit model card

ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan

This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5658
  • Accuracy: 0.87
  • F1: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 2024
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.8357 0.9956 56 0.6582 0.82 0.82
0.4742 1.9911 112 0.6527 0.81 0.81
0.3344 2.9867 168 0.9048 0.76 0.76
0.0659 4.0 225 0.6998 0.84 0.8400
0.0966 4.9956 281 0.6737 0.83 0.83
0.0026 5.9911 337 0.5133 0.89 0.89
0.0038 6.9867 393 0.5704 0.86 0.8600
0.0005 8.0 450 0.5722 0.86 0.8600
0.0003 8.9956 506 0.5632 0.87 0.87
0.0003 9.9556 560 0.5658 0.87 0.87

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
86.2M params
Tensor type
F32
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for JamesJenkins/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan

Finetuned
(92)
this model

Dataset used to train JamesJenkins/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan

Evaluation results