Edit model card

emotion_classification_v1

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1926
  • Accuracy: 0.5938
  • Precision: 0.6599
  • Recall: 0.5938
  • F1: 0.5920

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 80 1.6474 0.3375 0.3120 0.3375 0.2259
No log 2.0 160 1.4434 0.4625 0.5606 0.4625 0.4112
No log 3.0 240 1.3266 0.4875 0.5296 0.4875 0.4516
No log 4.0 320 1.2547 0.5375 0.5836 0.5375 0.5342
No log 5.0 400 1.2195 0.5875 0.6815 0.5875 0.5900
No log 6.0 480 1.1895 0.5563 0.5709 0.5563 0.5424
1.2914 7.0 560 1.1572 0.5437 0.5607 0.5437 0.5431
1.2914 8.0 640 1.1822 0.5563 0.5602 0.5563 0.5515
1.2914 9.0 720 1.2712 0.55 0.5695 0.55 0.5530
1.2914 10.0 800 1.2196 0.5625 0.5701 0.5625 0.5559
1.2914 11.0 880 1.2460 0.5312 0.5584 0.5312 0.5357
1.2914 12.0 960 1.2473 0.5563 0.5710 0.5563 0.5553
0.5247 13.0 1040 1.2438 0.575 0.5908 0.575 0.5761
0.5247 14.0 1120 1.3033 0.5312 0.5391 0.5312 0.5305
0.5247 15.0 1200 1.2928 0.5625 0.5861 0.5625 0.5673

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for JamesJayamuni/emotion_classification_v1

Finetuned
(1668)
this model

Evaluation results