JDWebProgrammer's picture
Update README.md
89385cd verified
metadata
tags:
  - merge
  - mergekit
  - lazymergekit
  - mistralai/Mistral-7B-v0.1
  - flemmingmiguel/MBX-7B-v3
base_model:
  - mistralai/Mistral-7B-v0.1
  - flemmingmiguel/MBX-7B-v3
license: openrail

Mistral-MBX-7B-slerp

Research & Development for AutoSynthetix AI

🌐 Website https://autosynthetix.com/

πŸ“¨ Discord https://discord.gg/pAKqENStQr

πŸ“¦ GitHub https://github.com/jdwebprogrammer

πŸ“¦ GitLab https://gitlab.com/jdwebprogrammer

πŸ† Patreon https://patreon.com/jdwebprogrammer

πŸ“· YouTube https://www.youtube.com/@jdwebprogrammer

πŸ“Ί Twitch https://www.twitch.tv/jdwebprogrammer

🐦 Twitter(X) https://twitter.com/jdwebprogrammer

  • License includes the license of the model derivatives:

Mistral-MBX-7B-slerp is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: mistralai/Mistral-7B-v0.1
        layer_range: [0, 32]
      - model: flemmingmiguel/MBX-7B-v3
        layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-v0.1
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "JDWebProgrammer/Mistral-MBX-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])