metadata
language:
- en
license: apache-2.0
library_name: transformers
tags:
- mergekit
- merge
- mistralai/Mistral-7B-v0.1
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- maywell/PiVoT-0.1-Evil-a
- mlabonne/ArchBeagle-7B
- LakoMoor/Silicon-Alice-7B
- roleplay
- rp
- not-for-all-audiences
base_model:
- mistralai/Mistral-7B-v0.1
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- maywell/PiVoT-0.1-Evil-a
- mlabonne/ArchBeagle-7B
- LakoMoor/Silicon-Alice-7B
model-index:
- name: Konstanta-Alpha-V2-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.62
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-Alpha-V2-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.14
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-Alpha-V2-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.11
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-Alpha-V2-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 61.08
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-Alpha-V2-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.22
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-Alpha-V2-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.9
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-Alpha-V2-7B
name: Open LLM Leaderboard
Konstanta-Alpha-V2-7B
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the DARE TIES to merge Kunoichi with PiVoT Evil and to merge ArchBeagle with Silicon Alice, and then merge the resulting 2 models with the gradient SLERP merge method. ChatML seems to work the best.
Models Merged
The following models were included in the merge:
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- maywell/PiVoT-0.1-Evil-a
- mlabonne/ArchBeagle-7B
- LakoMoor/Silicon-Alice-7B
Configuration
The following YAML configuration was used to produce this model (to reproduce use mergekit-mega command):
base_model: mistralai/Mistral-7B-v0.1
dtype: float16
merge_method: dare_ties
parameters:
int8_mask: true
slices:
- sources:
- layer_range: [0, 32]
model: mistralai/Mistral-7B-v0.1
- layer_range: [0, 32]
model: : SanjiWatsuki/Kunoichi-DPO-v2-7B
parameters:
density: 0.8
weight: 0.5
- layer_range: [0, 32]
model: : maywell/PiVoT-0.1-Evil-a
parameters:
density: 0.3
weight: 0.15
name: first-step
---
base_model: mistralai/Mistral-7B-v0.1
dtype: float16
merge_method: dare_ties
parameters:
int8_mask: true
slices:
- sources:
- layer_range: [0, 32]
model: mistralai/Mistral-7B-v0.1
- layer_range: [0, 32]
model: mlabonne/ArchBeagle-7B
parameters:
density: 0.8
weight: 0.75
- layer_range: [0, 32]
model: LakoMoor/Silicon-Alice-7B
parameters:
density: 0.6
weight: 0.30
name: second-step
---
models:
- model: first-step
- model: second-step
merge_method: slerp
base_model: first-step
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
int8_mask: true
normalize: true
dtype: float16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 72.35 |
AI2 Reasoning Challenge (25-Shot) | 69.62 |
HellaSwag (10-Shot) | 87.14 |
MMLU (5-Shot) | 65.11 |
TruthfulQA (0-shot) | 61.08 |
Winogrande (5-shot) | 81.22 |
GSM8k (5-shot) | 69.90 |