metadata
language: en
license: apache-2.0
library_name: transformers
SQFT Fine-tuned Model: sqft-sparsepeft-mistral-7b-v0.3-30-gsm8k-heu
- Base Model: IntelLabs/sqft-mistral-7b-v0.3-30-base
- Sparsity: 30%
- Quantization: No
- Finetune Method: SQFT + SparsePEFT
- Finetune data: GSM8K
- Sub-Adapter: Heuristic
Evaluation
MODEL_NAME=IntelLabs/sqft-sparsepeft-mistral-7b-v0.3-30-gsm8k-heu
lm_eval --model hf --model_args pretrained=${MODEL_NAME},add_bos_token=True,trust_remote_code=True --tasks gsm8k --batch_size auto:4
Refer to our repo for the environment information to run this command.
Model Sources
- Repository: https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT
- Paper: SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models
Citation
@article{munoz2024sqft,
title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models},
author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
journal={The 2024 Conference on Empirical Methods in Natural Language Processing (Findings)},
year={2024}
}
License
Apache-2.0