English
opt-13b-int4-inc / README.md
yintongl's picture
Update README.md
e03b5f3 verified
metadata
datasets:
  - NeelNanda/pile-10k
language:
  - en

Model Details

This model is an int4 model with group_size 128 of facebook/opt-13b generated by intel/auto-round. Inference of this model is compatible with AutoGPTQ's Kernel.

Reproduce the model

Here is the sample command to reproduce the model

git clone https://github.com/intel/auto-round
cd auto-round/examples/language-modeling
pip install -r requirements.txt
python3 main.py \
--model_name  facebook/opt-13b \
--device 0 \
--group_size 128 \
--bits 4 \
--iters 1000 \
--nsamples 512 \
--deployment_device 'gpu' \
--minmax_lr 2e-3 \
--disable_quanted_input \
--output_dir "./tmp_autoround" \

Evaluate the model

Install lm-eval-harness 0.4.2 from source.

lm_eval --model hf --model_args pretrained="Intel/opt-13b-int4-inc",autogptq=True,gptq_use_triton=True --device cuda:0 --tasks lambada_openai,hellaswag,piqa,winogrande,truthfulqa_mc1,openbookqa,boolq,arc_easy,arc_challenge,mmlu --batch_size 32
Metric FP16 INT4
Avg. 0.4989 0.5021
mmlu 0.2473 0.2456
lambada_openai 0.6858 0.6949
hellaswag 0.5247 0.5177
winogrande 0.6480 0.6448
piqa 0.7590 0.7573
truthfulqa_mc1 0.1971 0.2056
openbookqa 0.2680 0.2780
boolq 0.6584 0.6801
arc_easy 0.6713 0.6717
arc_challenge 0.3294 0.3251

Caveats and Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.

Here are a couple of useful links to learn more about Intel's AI software:

  • Intel Neural Compressor link
  • Intel Extension for Transformers link

Disclaimer

The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.

Cite

@article{cheng2023optimize, title={Optimize weight rounding via signed gradient descent for the quantization of llms}, author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao}, journal={arXiv preprint arXiv:2309.05516}, year={2023} }

arxiv github