Saiga
Collection
LLaMA-based or Mistral-based Russian chat models
•
8 items
•
Updated
•
23
Based on Gemma-2 9B Instruct.
Gemma-2 prompt format:
<start_of_turn>system
Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им.<end_of_turn>
<start_of_turn>user
Как дела?<end_of_turn>
<start_of_turn>model
Отлично, а у тебя?<end_of_turn>
<start_of_turn>user
Шикарно. Как пройти в библиотеку?<end_of_turn>
<start_of_turn>model
# Исключительно ознакомительный пример.
# НЕ НАДО ТАК ИНФЕРИТЬ МОДЕЛЬ В ПРОДЕ.
# См. https://github.com/vllm-project/vllm или https://github.com/huggingface/text-generation-inference
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
MODEL_NAME = "IlyaGusev/saiga_gemma2_10b"
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
load_in_8bit=True,
torch_dtype=torch.bfloat16,
device_map="auto"
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
print(generation_config)
inputs = ["Почему трава зеленая?", "Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч"]
for query in inputs:
prompt = tokenizer.apply_chat_template([{
"role": "user",
"content": query
}], tokenize=False, add_generation_prompt=True)
data = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
data = {k: v.to(model.device) for k, v in data.items()}
output_ids = model.generate(**data, generation_config=generation_config)[0]
output_ids = output_ids[len(data["input_ids"][0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
print(query)
print(output)
print()
print("==============================")
print()
v2:
v1:
Pivot: gemma_2_9b_it_abliterated
model | length_controlled_winrate | win_rate | standard_error | avg_length |
---|---|---|---|---|
gemma_2_9b_it_abliterated | 50.00 | 50.00 | 0.00 | 1126 |
saiga_gemma2_9b, v1 | 48.66 | 45.54 | 2.45 | 1066 |
saiga_gemms2_9b, v2 | 47.77 | 45.30 | 2.45 | 1074 |