HorcruxNo13's picture
Model save
3f62e3e
metadata
base_model: microsoft/dit-base-finetuned-rvlcdip
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: dit-base-finetuned-rvlcdip
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.87
          - name: Precision
            type: precision
            value: 0.7623411371237458
          - name: Recall
            type: recall
            value: 0.87

dit-base-finetuned-rvlcdip

This model is a fine-tuned version of microsoft/dit-base-finetuned-rvlcdip on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5940
  • Accuracy: 0.87
  • Precision: 0.7623
  • Recall: 0.87
  • F1 Score: 0.8126

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Score
No log 1.0 4 0.6006 0.8708 0.7584 0.8708 0.8107
No log 2.0 8 0.5169 0.8708 0.7584 0.8708 0.8107
No log 3.0 12 0.4027 0.8708 0.7584 0.8708 0.8107
0.5427 4.0 16 0.3865 0.8708 0.7584 0.8708 0.8107
0.5427 5.0 20 0.3894 0.8708 0.7584 0.8708 0.8107
0.5427 6.0 24 0.3729 0.8708 0.7584 0.8708 0.8107
0.5427 7.0 28 0.3707 0.8708 0.7584 0.8708 0.8107
0.4458 8.0 32 0.3790 0.8708 0.7584 0.8708 0.8107
0.4458 9.0 36 0.3504 0.8708 0.7584 0.8708 0.8107
0.4458 10.0 40 0.3356 0.8708 0.7584 0.8708 0.8107
0.4458 11.0 44 0.4082 0.8708 0.7584 0.8708 0.8107
0.4369 12.0 48 0.3455 0.8708 0.7584 0.8708 0.8107
0.4369 13.0 52 0.3074 0.8708 0.7584 0.8708 0.8107
0.4369 14.0 56 0.3097 0.8708 0.7584 0.8708 0.8107
0.4109 15.0 60 0.3173 0.8708 0.7584 0.8708 0.8107

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3