Llama-Salad-4x8B-V3 / README.md
HiroseKoichi's picture
Adding Evaluation Results (#1)
025a422 verified
---
license: llama3
library_name: transformers
tags:
- nsfw
- not-for-all-audiences
- llama-3
- text-generation-inference
- moe
- mergekit
- merge
model-index:
- name: Llama-Salad-4x8B-V3
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 66.54
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HiroseKoichi/Llama-Salad-4x8B-V3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 31.93
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HiroseKoichi/Llama-Salad-4x8B-V3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 8.53
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HiroseKoichi/Llama-Salad-4x8B-V3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.05
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HiroseKoichi/Llama-Salad-4x8B-V3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.45
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HiroseKoichi/Llama-Salad-4x8B-V3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 27.98
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HiroseKoichi/Llama-Salad-4x8B-V3
name: Open LLM Leaderboard
---
# Llama-Salad-4x8B-V3
Changes in V3:
- Uses `L3-8B-Stheno-v3.2` as the base model instead of `Meta-Llama-3-8B-Instruct`
- Removed `opus-v1.2-llama-3-8b-instruct-run3.5-epoch2.5` and added `Einstein-v6.1-Llama3-8B`
- Swapped `Llama-3-Soliloquy-8B-v2` for `L3-8B-Stheno-v3.2`
I was clearly wrong when I said V2 would be difficult to improve on, because V3 is significantly better in just about every aspect. Stheno-v3.2 fixed all of the issues present in Stheno-v3.1, making it my favorite roleplay model and the best base model for llama-3 MoE merges.
The one thing I do want to improve on is finding a better conversational model than Meta-Llama-3-8B-Instruct; it's good for that use case, but I'm sure there's a better one out there. I tried using llama-3-cat-8b-instruct-v1, but it absolutely tanked the model's situational awareness and kept making blatantly contradictory statements.
# Quantization Formats
**GGUF**
- Static:
- https://huggingface.co/mradermacher/Llama-Salad-4x8B-V3-GGUF
- Imatrix:
- https://huggingface.co/mradermacher/Llama-Salad-4x8B-V3-i1-GGUF
# Details
- **License**: [llama3](https://llama.meta.com/llama3/license/)
- **Instruct Format**: [llama-3](https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/)
- **Context Size**: 8K
## Models Used
- [L3-8B-Stheno-v3.2](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.2)
- [Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct)
- [Llama-3-8B-Synthia-v3.5](https://huggingface.co/migtissera/Llama-3-8B-Synthia-v3.5)
- [Einstein-v6.1-Llama3-8B](https://huggingface.co/Weyaxi/Einstein-v6.1-Llama3-8B)
## Merge Config
```yaml
base_model: Sao10K/L3-8B-Stheno-v3.2
gate_mode: hidden
dtype: bfloat16
experts_per_token: 2
experts:
- source_model: NousResearch/Meta-Llama-3-8B-Instruct
positive_prompts:
- "chat"
- "conversation"
- source_model: Weyaxi/Einstein-v6.1-Llama3-8B
positive_prompts:
- "science"
- "physics"
- "chemistry"
- "biology"
- "math"
- "step-by-step"
- "logical reasoning"
- "multilingual"
- "translation"
- "language translation"
- "foreign language"
negative_prompts:
- "programming language"
- source_model: migtissera/Llama-3-8B-Synthia-v3.5
positive_prompts:
- "summarize"
- "paraphrase"
- "list"
- "explain"
- "define"
- "analyze"
- "rephrase"
- "elaborate"
- "programming language"
- "JavaScript"
- "Python programming language"
- "Rust programming language"
- "C++ programming language"
- "GO programming language"
- "Ruby programming language"
- "Haskell programming language"
- "SQL query language"
- "CSS markup styling language"
- "code"
- source_model: Sao10K/L3-8B-Stheno-v3.2
positive_prompts:
- "characters"
- "scene"
- "roleplay"
- "erotic roleplay"
- "sexual fetish"
- "NSFW"
- "creative writing"
- "storytelling"
- "narration"
- "narrative setting"
- "narrative plot"
- "narrative exposition"
- "narrative theme"
- "narrative climax"
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_HiroseKoichi__Llama-Salad-4x8B-V3)
| Metric |Value|
|-------------------|----:|
|Avg. |24.75|
|IFEval (0-Shot) |66.54|
|BBH (3-Shot) |31.93|
|MATH Lvl 5 (4-Shot)| 8.53|
|GPQA (0-shot) | 7.05|
|MuSR (0-shot) | 6.45|
|MMLU-PRO (5-shot) |27.98|