Hebrew Cross-Encoder Model
Usage
from sentence_transformers import CrossEncoder
model = CrossEncoder('HeTree/HeCross')
# Scores (already after sigmoid)
scores = model.predict([('כמה אנשים חיים בברלין?', 'ברלין מונה 3,520,031 תושבים רשומים בשטח של 891.82 קמ"ר.'),
('כמה אנשים חיים בברלין?', 'העיר ניו יורק מפורסמת בזכות מוזיאון המטרופוליטן לאומנות.')])
print(scores)
Usage with Transformers AutoModel
You can use the model also directly with Transformers library (without SentenceTransformers library):
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import numpy as np
# Function that applies sigmoid to a score
def sigmoid(x):
return 1 / (1 + np.exp(-x))
model = AutoModelForSequenceClassification.from_pretrained('HeTree/HeCross')
tokenizer = AutoTokenizer.from_pretrained('HeTree/HeCross')
features = tokenizer(['כמה אנשים חיים בברלין?', 'כמה אנשים חיים בברלין?'],
['ברלין מונה 3,520,031 תושבים רשומים בשטח של 891.82 קמ"ר.', 'העיר ניו יורק מפורסמת בזכות מוזיאון המטרופוליטן לאומנות.'],
padding=True, truncation=True, return_tensors="pt")
model.eval()
with torch.no_grad():
scores = sigmoid(model(**features).logits)
print(scores)
Zero-Shot Classification
This model can also be used for zero-shot-classification:
from transformers import pipeline
classifier = pipeline("zero-shot-classification", model='HeTree/HeCross')
sent = "בשבוע שעבר שדרגתי את גרסת הטלפון שלי ."
candidate_labels = ["נייד לשיחות", "אתר", "חיוב חשבון", "גישה לחשבון בנק"]
res = classifier(sent, candidate_labels)
print(res)
Citing
If you use HeCross in your research, please cite Mevaker: Conclusion Extraction and Allocation Resources for the Hebrew Language.
@article{shalumov2024mevaker,
title={Mevaker: Conclusion Extraction and Allocation Resources for the Hebrew Language},
author={Vitaly Shalumov and Harel Haskey and Yuval Solaz},
year={2024},
eprint={2403.09719},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.