GuCuChiara's picture
Training complete
c405b17
|
raw
history blame
2.28 kB
metadata
license: mit
base_model: emilyalsentzer/Bio_ClinicalBERT
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: NLP-HIBA_DisTEMIST_fine_tuned_ClinicalBERT-pretrained-model
    results: []

NLP-HIBA_DisTEMIST_fine_tuned_ClinicalBERT-pretrained-model

This model is a fine-tuned version of emilyalsentzer/Bio_ClinicalBERT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4109
  • Precision: 0.5413
  • Recall: 0.5693
  • F1: 0.5550
  • Accuracy: 0.9254

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 71 0.2386 0.5723 0.5449 0.5583 0.9273
No log 2.0 142 0.3000 0.5767 0.5693 0.5730 0.9240
No log 3.0 213 0.2973 0.5882 0.5830 0.5856 0.9279
No log 4.0 284 0.3333 0.5222 0.5742 0.5470 0.9205
No log 5.0 355 0.3613 0.5012 0.5957 0.5444 0.9184
No log 6.0 426 0.3772 0.5516 0.5693 0.5603 0.9268
No log 7.0 497 0.4006 0.5574 0.5596 0.5585 0.9257
0.0539 8.0 568 0.4109 0.5413 0.5693 0.5550 0.9254

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1