metadata
language:
- en
- zh
license: apache-2.0
library_name: transformers
widget:
- text: <s> [|User|] Hi 👋 </s>[|Assistant|]
model-index:
- name: MiniChat-2-3B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 44.88
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-2-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 67.69
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-2-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.59
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-2-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 49.64
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-2-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.46
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-2-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 32.68
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-2-3B
name: Open LLM Leaderboard
MiniChat-2-3B
📑 arXiv | 👻 GitHub | 🤗 HuggingFace-MiniMA | 🤗 HuggingFace-MiniChat | 🤖 ModelScope-MiniMA | 🤖 ModelScope-MiniChat | 🤗 HuggingFace-MiniChat-1.5 | 🤗 HuggingFace-MiniMA-2 | 🤗 HuggingFace-MiniChat-2
🆕 Updates from MiniChat-3B:
❗ Must comply with LICENSE of LLaMA2 since it is derived from LLaMA2.
A language model continued from MiniMA-3B and finetuned on both instruction and preference data.
Surpassing Vicuna-7B and approximating LLaMA-2-Chat-7B on MT-Bench.
Standard Benchmarks
Method | TFLOPs | MMLU (5-shot) | CEval (5-shot) | DROP (3-shot) | HumanEval (0-shot) | BBH (3-shot) | GSM8K (8-shot) |
---|---|---|---|---|---|---|---|
Mamba-2.8B | 4.6E9 | 25.58 | 24.74 | 15.72 | 7.32 | 29.37 | 3.49 |
ShearedLLaMA-2.7B | 0.8E9 | 26.97 | 22.88 | 19.98 | 4.88 | 30.48 | 3.56 |
BTLM-3B | 11.3E9 | 27.20 | 26.00 | 17.84 | 10.98 | 30.87 | 4.55 |
StableLM-3B | 72.0E9 | 44.75 | 31.05 | 22.35 | 15.85 | 32.59 | 10.99 |
Qwen-1.8B | 23.8E9 | 44.05 | 54.75 | 12.97 | 14.02 | 30.80 | 22.97 |
Phi-2-2.8B | 159.9E9 | 56.74 | 34.03 | 30.74 | 46.95 | 44.13 | 55.42 |
LLaMA-2-7B | 84.0E9 | 46.00 | 34.40 | 31.57 | 12.80 | 32.02 | 14.10 |
MiniMA-3B | 4.0E9 | 28.51 | 28.23 | 22.50 | 10.98 | 31.61 | 8.11 |
MiniChat-3B | 4.0E9 | 38.40 | 36.48 | 22.58 | 18.29 | 31.36 | 29.72 |
MiniMA-2-3B | 13.4E9 | 40.14 | 44.65 | 23.10 | 14.63 | 31.43 | 8.87 |
MiniChat-2-3B | 13.4E9 | 46.17 | 43.91 | 30.26 | 22.56 | 34.95 | 38.13 |
Instruction-following Benchmarks
Method | AlpacaEval | MT-Bench | MT-Bench-ZH |
---|---|---|---|
GPT-4 | 95.28 | 9.18 | 8.96 |
Zephyr-7B-Beta | 90.60 | 7.34 | 6.27# |
Vicuna-7B | 76.84 | 6.17 | 5.22# |
LLaMA-2-Chat-7B | 71.37 | 6.27 | 5.43# |
Qwen-Chat-7B | - | - | 6.24 |
Phi-2-DPO | 81.37 | - | 1.59#$ |
StableLM-Zephyr-3B | 76.00 | 6.64 | 4.31# |
Rocket-3B | 79.75 | 6.56 | 4.07# |
Qwen-Chat-1.8B | - | - | 5.65 |
MiniChat-3B | 48.82 | - | - |
MiniChat-2-3B | 77.30 | 6.23 | 6.04 |
# specialized mainly for English.
$ finetuned without multi-turn instruction data.
The following is an example code snippet to use MiniChat-2-3B:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from conversation import get_default_conv_template
# MiniChat
tokenizer = AutoTokenizer.from_pretrained("GeneZC/MiniChat-2-3B", use_fast=False)
# GPU.
model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-2-3B", use_cache=True, device_map="auto", torch_dtype=torch.float16).eval()
# CPU.
# model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-2-3B", use_cache=True, device_map="cpu", torch_dtype=torch.float16).eval()
conv = get_default_conv_template("minichat")
question = "Implement a program to find the common elements in two arrays without using any extra data structures."
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer([prompt]).input_ids
output_ids = model.generate(
torch.as_tensor(input_ids).cuda(),
do_sample=True,
temperature=0.7,
max_new_tokens=1024,
)
output_ids = output_ids[0][len(input_ids[0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
# output: "def common_elements(arr1, arr2):\n if len(arr1) == 0:\n return []\n if len(arr2) == 0:\n return arr1\n\n common_elements = []\n for element in arr1:\n if element in arr2:\n common_elements.append(element)\n\n return common_elements"
# Multiturn conversation could be realized by continuously appending questions to `conv`.
Bibtex
@article{zhang2023law,
title={Towards the Law of Capacity Gap in Distilling Language Models},
author={Zhang, Chen and Song, Dawei and Ye, Zheyu and Gao, Yan},
year={2023},
url={https://arxiv.org/abs/2311.07052}
}
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 51.49 |
AI2 Reasoning Challenge (25-Shot) | 44.88 |
HellaSwag (10-Shot) | 67.69 |
MMLU (5-Shot) | 47.59 |
TruthfulQA (0-shot) | 49.64 |
Winogrande (5-shot) | 66.46 |
GSM8k (5-shot) | 32.68 |