GatinhoEducado's picture
Update README.md
aff7a4c verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: whisper-tiny-finetuned-minds14
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: PolyAI/minds14
          type: PolyAI/minds14
          config: en-US
          split: train[450:]
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 0.30460448642266824

whisper-tiny-finetuned-minds14

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5352
  • Wer Ortho: 0.3029
  • Wer: 0.3046

Model description

I have made it for audio corse Unit 5 Hands on Here is some additional info https://outleys.site/en/development/AI/hugface-unit-5-excercise-guide/

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
1.1444 0.8850 100 0.4740 0.3411 0.3388
0.2788 1.7699 200 0.4633 0.2986 0.3017
0.1377 2.6549 300 0.4969 0.3048 0.3052
0.0561 3.5398 400 0.5145 0.3017 0.3034
0.0177 4.4248 500 0.5241 0.3091 0.3117
0.01 5.3097 600 0.5352 0.3029 0.3046

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3