Edit model card

Model description

Модель детекции номерных знаков автомобилей РФ, в данный момент 2 класса n_p и p_p, обычные номера и полицейские

Intended uses & limitations

Пример использования:

from transformers import AutoModelForObjectDetection, AutoImageProcessor
import torch
import supervision as sv


DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForObjectDetection.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector_lightning').to(DEVICE)
processor = AutoImageProcessor.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector_lightning')

path = 'path/to/image'
image = Image.open(path)
inputs = processor(image, return_tensors="pt").to(DEVICE)
with torch.no_grad():
    outputs = model(**inputs)
w, h = image.size
results = processor.post_process_object_detection(
    outputs, target_sizes=[(h, w)], threshold=0.3)
detections = sv.Detections.from_transformers(results[0]).with_nms(0.3)
labels = [
    model.config.id2label[class_id]
    for class_id
    in detections.class_id
]

annotated_image = image.copy()
annotated_image = sv.BoundingBoxAnnotator().annotate(annotated_image, detections)
annotated_image = sv.LabelAnnotator().annotate(annotated_image, detections, labels=labels)
  
grid = sv.create_tiles(
  [annotated_image],
  grid_size=(1, 1),
  single_tile_size=(512, 512),
  tile_padding_color=sv.Color.WHITE,
  tile_margin_color=sv.Color.WHITE
)
sv.plot_image(grid, size=(10, 10))

Training and evaluation data

Обучал на своём датасете - https://universe.roboflow.com/testcarplate/russian-license-plates-classification-by-this-type

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • seed: 42
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 20

Training results

Пока не разобрался, как при дообучении лайтингом автоматом всё отправить сюда

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.5.0+cu124
  • Tokenizers 0.20.1
Downloads last month
54
Safetensors
Model size
42.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Garon16/rtdetr_r50vd_russia_plate_detector_lightning

Finetuned
(11)
this model