metadata
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
library_name: peft
license: llama3.1
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-3_180-samples_config-1_auto
results: []
Llama-31-8B_task-3_180-samples_config-1_auto
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5623
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7081 | 1.0 | 17 | 1.5542 |
0.509 | 2.0 | 34 | 0.4773 |
0.3144 | 3.0 | 51 | 0.3656 |
0.2899 | 4.0 | 68 | 0.3454 |
0.2162 | 5.0 | 85 | 0.3313 |
0.3465 | 6.0 | 102 | 0.3374 |
0.2498 | 7.0 | 119 | 0.3556 |
0.1023 | 8.0 | 136 | 0.4104 |
0.0862 | 9.0 | 153 | 0.4676 |
0.0549 | 10.0 | 170 | 0.4978 |
0.032 | 11.0 | 187 | 0.5856 |
0.0072 | 12.0 | 204 | 0.5623 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1