ThiloteE's picture
Update README.md
8644ea8 verified
---
base_model: 01-ai/Yi-1.5-9B-Chat-16K
pipeline_tag: text-generation
inference: false
model_creator: 01-AI
model_name: Yi-1.5-9B-Chat-16K
model_type: llama
language:
- en
- zh
library_name: transformers
license: apache-2.0
quantized_by: ThiloteE
tags:
- text-generation-inference
- transformers
- GGUF
- GPT4All
---
>[!Note]
>This is a model that is assumed to perform well, but may require more testing and user feedback. Be aware, only models featured within the GUI of GPT4All, are curated and officially supported by Nomic. Use at your own risk.
# About
<!-- ### quantize_version: 3 -->
<!-- ### convert_type: hf -->
- Static quants of https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K
- Quantized by [ThiloteE](https://huggingface.co/ThiloteE) with llama.cpp commit [c3776ca](https://github.com/ggerganov/llama.cpp/commit/c3776cacabce2ee35f172fb72be7a519752125fa)
These quants were created with a customized configuration that have been proven to not cause visible end of string (eos) tokens during inference with [GPT4All](https://www.nomic.ai/gpt4all).
The config.json, generation_config.json and tokenizer_config.json differ from the original configuration as can be found in the original model's repository at the time of creation of these quants.
# Prompt Template (for GPT4All)
System Prompt:
```
<|im_start|>system
Below is an instruction that describes a task. Write a response that appropriately completes the request.<|im_end|>
```
Chat Template:
```
<|im_start|>user
%1<|im_end|>
<|im_start|>assistant
%2<|im_end|>
```
Do not miss the newlines at the end!
# Context Length
`16384`
# Provided Quants
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/pstella-16b-GGUF/resolve/main/pstella-16b.Q4_K_M.gguf) | Q4_0 | 4.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/pstella-16b-GGUF/resolve/main/pstella-16b.f16.gguf) | f16 | 17.2 | 16 bpw, overkill |
# About GGUF
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
Here is a handy graph by ikawrakow comparing some quant types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
# Thanks
I thank Mradermacher and TheBloke for Inspiration to this model card and their contributions to open source. I thank 3Simplex for everything.
Shoutout to the GPT4All and llama.cpp communities :-)
------
<!-- footer end -->
<!-- original-model-card start -->
# Original Model card:
---
license: apache-2.0
---
<div align="center">
<picture>
<img src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="150px">
</picture>
</div>
<p align="center">
<a href="https://github.com/01-ai">πŸ™ GitHub</a> β€’
<a href="https://discord.gg/hYUwWddeAu">πŸ‘Ύ Discord</a> β€’
<a href="https://twitter.com/01ai_yi">🐀 Twitter</a> β€’
<a href="https://github.com/01-ai/Yi-1.5/issues/2">πŸ’¬ WeChat</a>
<br/>
<a href="https://arxiv.org/abs/2403.04652">πŸ“ Paper</a> β€’
<a href="https://01-ai.github.io/">πŸ’ͺ Tech Blog</a> β€’
<a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#faq">πŸ™Œ FAQ</a> β€’
<a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#learning-hub">πŸ“— Learning Hub</a>
</p>
# Intro
Yi-1.5 is an upgraded version of Yi. It is continuously pre-trained on Yi with a high-quality corpus of 500B tokens and fine-tuned on 3M diverse fine-tuning samples.
Compared with Yi, Yi-1.5 delivers stronger performance in coding, math, reasoning, and instruction-following capability, while still maintaining excellent capabilities in language understanding, commonsense reasoning, and reading comprehension.
<div align="center">
Model | Context Length | Pre-trained Tokens
| :------------: | :------------: | :------------: |
| Yi-1.5 | 4K, 16K, 32K | 3.6T
</div>
# Models
- Chat models
<div align="center">
| Name | Download |
| --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Yi-1.5-34B-Chat | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI)|
| Yi-1.5-34B-Chat-16K | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
| Yi-1.5-9B-Chat | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
| Yi-1.5-9B-Chat-16K | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
| Yi-1.5-6B-Chat | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
</div>
- Base models
<div align="center">
| Name | Download |
| ---------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Yi-1.5-34B | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
| Yi-1.5-34B-32K | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
| Yi-1.5-9B | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
| Yi-1.5-9B-32K | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
| Yi-1.5-6B | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
</div>
# Benchmarks
- Chat models
Yi-1.5-34B-Chat is on par with or excels beyond larger models in most benchmarks.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/KcsJ9Oc1VnEmfCDEJc5cd.png)
Yi-1.5-9B-Chat is the top performer among similarly sized open-source models.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/xf6pLg5jqRCwjlh6m3t6_.png)
- Base models
Yi-1.5-34B is on par with or excels beyond larger models in some benchmarks.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/BwU7QM-03dZvZzwdIE1xY.png)
Yi-1.5-9B is the top performer among similarly sized open-source models.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/y-EYSYPT-3aWLJ0x8R94F.png)
# Quick Start
For getting up and running with Yi-1.5 models quickly, see [README](https://github.com/01-ai/Yi-1.5).
<!-- original-model-card end -->
<!-- end -->