SetFit with sentence-transformers/all-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A SetFitHead instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-mpnet-base-v2
- Classification head: a SetFitHead instance
- Maximum Sequence Length: 384 tokens
- Number of Classes: 18 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("leavoigt/vulnerability_multilabel_updated")
# Run inference
preds = model("Workers in the formal sector. Formal sector workers also face economic risks. A number of them experience income instability due to contractualization, retrenchment, and firm closures. In 2014, contractual workers accounted for 22 percent of the total 4.5 million workers employed in establishments with 20 or more employees.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 21 | 72.6472 | 238 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 0)
- max_steps: -1
- sampling_strategy: undersampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0006 | 1 | 0.1906 | - |
0.0316 | 50 | 0.1275 | 0.1394 |
0.0631 | 100 | 0.0851 | 0.1247 |
0.0947 | 150 | 0.0959 | 0.1269 |
0.1263 | 200 | 0.1109 | 0.1179 |
0.1578 | 250 | 0.0923 | 0.1354 |
0.1894 | 300 | 0.063 | 0.1292 |
0.2210 | 350 | 0.0555 | 0.1326 |
0.2525 | 400 | 0.0362 | 0.1127 |
0.2841 | 450 | 0.0582 | 0.132 |
0.3157 | 500 | 0.0952 | 0.1339 |
0.3472 | 550 | 0.0793 | 0.1171 |
0.3788 | 600 | 0.059 | 0.1187 |
0.4104 | 650 | 0.0373 | 0.1131 |
0.4419 | 700 | 0.0593 | 0.1144 |
0.4735 | 750 | 0.0405 | 0.1174 |
0.5051 | 800 | 0.0284 | 0.1196 |
0.5366 | 850 | 0.0329 | 0.1116 |
0.5682 | 900 | 0.0895 | 0.1193 |
0.5997 | 950 | 0.0576 | 0.1159 |
0.6313 | 1000 | 0.0385 | 0.1203 |
0.6629 | 1050 | 0.0842 | 0.1195 |
0.6944 | 1100 | 0.0274 | 0.113 |
0.7260 | 1150 | 0.0226 | 0.1137 |
0.7576 | 1200 | 0.0276 | 0.1204 |
0.7891 | 1250 | 0.0355 | 0.1163 |
0.8207 | 1300 | 0.077 | 0.1161 |
0.8523 | 1350 | 0.0735 | 0.1135 |
0.8838 | 1400 | 0.0357 | 0.1175 |
0.9154 | 1450 | 0.0313 | 0.1207 |
0.9470 | 1500 | 0.0241 | 0.1159 |
0.9785 | 1550 | 0.0339 | 0.1161 |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.3.1
- Transformers: 4.38.1
- PyTorch: 2.1.0+cu121
- Datasets: 2.3.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 61
Inference API (serverless) has been turned off for this model.
Model tree for GIZ/VULNERABILITY-multilabel-mpnet
Base model
sentence-transformers/all-mpnet-base-v2