Edit model card

M2 - small CNN trained on embeddings

The model is trained on ProtBert-BFD embeddings of knots_AF dataset to recognize between knotted and unknotted proteins based on their amino acid sequence.

Accuracy on the test set:

Dataset size Unknotted set size Accuracy TPR TNR
All 39412 19718 0.9690 0.9569 0.9811
SPOUT 7371 550 0.9712 0.9815 0.8436
TDD 612 24 0.9673 0.9796 0.6667
DUF 716 429 0.9413 0.8955 0.9720
AdoMet synthase 1794 240 0.9727 0.9755 0.9542
Carbonic anhydrase 1531 539 0.8870 0.8619 0.9332
UCH 477 125 0.8700 0.8892 0.816
ATCase/OTCase 3799 3352 0.9932 0.9418 1.0
ribosomal-mitochondrial 147 41 0.8163 0.8319 0.7805
membrane 8309 1577 0.9740 0.9857 0.9239
VIT 14347 12639 0.9742 0.8214 0.9948
biosynthesis of lantibiotics 392 286 0.9388 0.8019 0.9895
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Dataset used to train EvaKlimentova/knots_M2_embeddings_alphafold