Transformers
English
Inference Endpoints
Edit model card

This is a set of sparse autoencoders (SAEs) trained on Llama 3.1 8B using the 10B sample of the RedPajama v2 corpus, which comes out to roughly 8.5B tokens using the Llama 3 tokenizer. The SAEs are organized by hookpoint, and can be loaded using the EleutherAI sae library.

Unlike EleutherAI/sae-llama-3.1-8b-32x, these SAEs were trained with the MultiTopK loss, which allows them to be used at varying sparsity levels at inference time. For more information, see OpenAI's description of the loss in this paper.

With the sae library installed, you can access an SAE like this:

from sae import Sae

sae = Sae.load_from_hub("EleutherAI/sae-llama-3.1-8b-64x", hookpoint="layers.23.mlp")
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Dataset used to train EleutherAI/sae-llama-3.1-8b-64x