|
--- |
|
license: apache-2.0 |
|
base_model: hustvl/yolos-tiny |
|
tags: |
|
- generated_from_trainer |
|
- Workplace Safety |
|
- Safety |
|
datasets: |
|
- hard-hat-detection |
|
model-index: |
|
- name: yolos-tiny-Hard_Hat_Detection |
|
results: [] |
|
language: |
|
- en |
|
pipeline_tag: object-detection |
|
--- |
|
|
|
# yolos-tiny-Hard_Hat_Detection |
|
|
|
This model is a fine-tuned version of [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny) on the hard-hat-detection dataset. |
|
|
|
## Model description |
|
|
|
For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Object%20Detection/Hard%20Hat%20Detection/Hard_Hat_Object_Detection_YOLOS.ipynb |
|
|
|
## Intended uses & limitations |
|
|
|
This model is intended to demonstrate my ability to solve a complex problem using technology. |
|
|
|
## Training and evaluation data |
|
|
|
Dataset Source: https://huggingface.co/datasets/keremberke/hard-hat-detection |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Metric Name | IoU | Area| maxDets | Metric Value | |
|
|:-----:|:-----:|:-----:|:-----:|:-----:| |
|
| Average Precision (AP)| IoU=0.50:0.95 | all | maxDets=100 | 0.346 | |
|
| Average Precision (AP)| IoU=0.50 | all | maxDets=100 | 0.747 | |
|
| Average Precision (AP)| IoU=0.75 | all | maxDets=100 | 0.275 | |
|
| Average Precision (AP)| IoU=0.50:0.95 | small | maxDets=100 | 0.128 | |
|
| Average Precision (AP)| IoU=0.50:0.95 | medium | maxDets=100 | 0.343 | |
|
| Average Precision (AP)| IoU=0.50:0.95 | large | maxDets=100 | 0.521 | |
|
| Average Recall (AR)| IoU=0.50:0.95 | all | maxDets=1 | 0.188 | |
|
| Average Recall (AR)| IoU=0.50:0.95 | all | maxDets=10 | 0.484 | |
|
| Average Recall (AR)| IoU=0.50:0.95 | all | maxDets=100 | 0.558 | |
|
| Average Recall (AR)| IoU=0.50:0.95 | small | maxDets=100 | 0.320 | |
|
| Average Recall (AR)| IoU=0.50:0.95 | medium | maxDets=100 | 0.538 | |
|
| Average Recall (AR)| IoU=0.50:0.95 | large | maxDets=100 | 0.743 | |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.3 |
|
- Tokenizers 0.13.3 |