tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: mpnet-base-News_About_Gold
results: []
language:
- en
pipeline_tag: text-classification
mpnet-base-News_About_Gold
This model is a fine-tuned version of microsoft/mpnet-base. It achieves the following results on the evaluation set:
- Loss: 0.3098
- Accuracy: 0.9068
- Weighted f1: 0.9068
- Micro f1: 0.9068
- Macro f1: 0.8351
- Weighted recall: 0.9068
- Micro recall: 0.9068
- Macro recall: 0.8406
- Weighted precision: 0.9071
- Micro precision: 0.9068
- Macro precision: 0.8309
Model description
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Sentiment%20Analysis/Sentiment%20Analysis%20of%20Commodity%20News%20-%20Gold%20(Transformer%20Comparison)/News%20About%20Gold%20-%20Sentiment%20Analysis%20-%20MPNet-Base%20with%20W%26B.ipynb
This project is part of a comparison of seven (7) transformers. Here is the README page for the comparison: https://github.com/DunnBC22/NLP_Projects/tree/main/Sentiment%20Analysis/Sentiment%20Analysis%20of%20Commodity%20News%20-%20Gold%20(Transformer%20Comparison)
Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.
Training and evaluation data
Dataset Source: https://www.kaggle.com/datasets/ankurzing/sentiment-analysis-in-commodity-market-gold
Input Word Length:
Class Distribution:
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.8316 | 1.0 | 133 | 0.5146 | 0.8742 | 0.8604 | 0.8742 | 0.6541 | 0.8742 | 0.8742 | 0.6583 | 0.8487 | 0.8742 | 0.6515 |
0.4675 | 2.0 | 266 | 0.3833 | 0.8898 | 0.8857 | 0.8898 | 0.7813 | 0.8898 | 0.8898 | 0.7542 | 0.8862 | 0.8898 | 0.8298 |
0.3276 | 3.0 | 399 | 0.3464 | 0.8997 | 0.8985 | 0.8997 | 0.8302 | 0.8997 | 0.8997 | 0.8212 | 0.8984 | 0.8997 | 0.8408 |
0.2767 | 4.0 | 532 | 0.3098 | 0.9101 | 0.9103 | 0.9101 | 0.8412 | 0.9101 | 0.9101 | 0.8462 | 0.9106 | 0.9101 | 0.8367 |
0.2429 | 5.0 | 665 | 0.3098 | 0.9068 | 0.9068 | 0.9068 | 0.8351 | 0.9068 | 0.9068 | 0.8406 | 0.9071 | 0.9068 | 0.8309 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.13.3