DunnBC22's picture
Update README.md
7d7947c
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
  - Document Layout
  - LayoutLMv3
datasets:
  - funsd-layoutlmv3
metrics:
  - f1
  - accuracy
  - recall
  - precision
model-index:
  - name: layoutlmv3-base-fine_tuned-FUNSD_dataset
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: funsd-layoutlmv3
          type: funsd-layoutlmv3
          config: funsd
          split: test
          args: funsd
        metrics:
          - name: Precision
            type: precision
            value: 0.8978890525282278
          - name: Recall
            type: recall
            value: 0.9085941381023348
          - name: F1
            type: f1
            value: 0.9032098765432099
          - name: Accuracy
            type: accuracy
            value: 0.8461904195887318
language:
  - en

layoutlmv3-base-fine_tuned-FUNSD_dataset

This model is a fine-tuned version of microsoft/layoutlmv3-base on the funsd-layoutlmv3 dataset.

It achieves the following results on the evaluation set:

  • Loss: 0.2956
  • Precision: 0.8979
  • Recall: 0.9086
  • F1: 0.9032
  • Accuracy: 0.8462

Model description

For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Document%20AI/Document%20Layout/LayoutLMv3%20with%20FUNSD/Fine%20tuning%20%26%20Evaluation%20-%20LayoutLMv3%20with%20FUNSD.ipynb

Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

Training and evaluation data

Dataset Source: https://huggingface.co/datasets/nielsr/funsd-layoutlmv3

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2000

Training results

Train Loss Epoch Step Valid. Loss Precision Recall F1 Accuracy
0.2149 1.33 100 0.2402 0.7469 0.8212 0.7823 0.7758
0.1466 2.67 200 0.1869 0.8161 0.8838 0.8486 0.8273
0.1122 4.0 300 0.1902 0.8538 0.8997 0.8761 0.8316
0.0757 5.33 400 0.1857 0.8354 0.8927 0.8631 0.8349
0.0427 6.67 500 0.2091 0.8792 0.8897 0.8844 0.8446
0.0495 8.0 600 0.2235 0.8825 0.9031 0.8927 0.8370
0.0369 9.33 700 0.2532 0.8826 0.9146 0.8983 0.8349
0.0329 10.67 800 0.2576 0.8829 0.8992 0.8910 0.8474
0.0229 12.0 900 0.2579 0.8827 0.8937 0.8882 0.8443
0.0219 13.33 1000 0.2710 0.8710 0.8987 0.8846 0.8347
0.0191 14.67 1100 0.2582 0.8889 0.9061 0.8974 0.8454
0.0179 16.0 1200 0.2646 0.8870 0.9006 0.8938 0.8356
0.0135 17.33 1300 0.2798 0.8949 0.9180 0.9063 0.8512
0.007 18.67 1400 0.2944 0.8988 0.9091 0.9039 0.8455
0.0064 20.0 1500 0.2822 0.8938 0.9071 0.9004 0.8452
0.0089 21.33 1600 0.3003 0.8941 0.9101 0.9020 0.8484
0.0099 22.67 1700 0.3008 0.8942 0.9071 0.9006 0.8439
0.0069 24.0 1800 0.2965 0.8942 0.9071 0.9006 0.8386
0.0048 25.33 1900 0.2973 0.9027 0.9076 0.9051 0.8501
0.0069 26.67 2000 0.2956 0.8979 0.9086 0.9032 0.8462

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.13.3