anton-l's picture
anton-l HF staff
Upload README.md
368adc8
metadata
language:
  - hsb
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_8_0
  - generated_from_trainer
  - hsb
  - robust-speech-event
  - model_for_talk
  - hf-asr-leaderboard
datasets:
  - mozilla-foundation/common_voice_8_0
model-index:
  - name: wav2vec2-large-xls-r-300m-hsb-v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8
          type: mozilla-foundation/common_voice_8_0
          args: hsb
        metrics:
          - name: Test WER
            type: wer
            value: 0.4654228855721393
          - name: Test CER
            type: cer
            value: 0.11351049990708047
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: hsb
        metrics:
          - name: Test WER
            type: wer
            value: NA
          - name: Test CER
            type: cer
            value: NA

wav2vec2-large-xls-r-300m-hsb-v2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HSB dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5328
  • Wer: 0.4596

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v2 --dataset mozilla-foundation/common_voice_8_0 --config hsb --split test --log_outputs

  1. To evaluate on speech-recognition-community-v2/dev_data

Upper Sorbian (hsb) not found in speech-recognition-community-v2/dev_data

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00045
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
8.5979 3.23 100 3.5602 1.0
3.303 6.45 200 3.2238 1.0
3.2034 9.68 300 3.2002 0.9888
2.7986 12.9 400 1.2408 0.9210
1.3869 16.13 500 0.7973 0.7462
1.0228 19.35 600 0.6722 0.6788
0.8311 22.58 700 0.6100 0.6150
0.717 25.81 800 0.6236 0.6013
0.6264 29.03 900 0.6031 0.5575
0.5494 32.26 1000 0.5656 0.5309
0.4781 35.48 1100 0.5289 0.4996
0.4311 38.71 1200 0.5375 0.4768
0.3902 41.94 1300 0.5246 0.4703
0.3508 45.16 1400 0.5382 0.4696
0.3199 48.39 1500 0.5328 0.4596

Framework versions

  • Transformers 4.16.1
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.2
  • Tokenizers 0.11.0