Dev372's picture
End of training
15cd5f8 verified
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-small.en
tags:
  - generated_from_trainer
datasets:
  - Hani89/medical_asr_recording_dataset
metrics:
  - wer
model-index:
  - name: English Whisper Model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Medical
          type: Hani89/medical_asr_recording_dataset
          args: 'split: test'
        metrics:
          - name: Wer
            type: wer
            value: 6.681238615664845

English Whisper Model

This model is a fine-tuned version of openai/whisper-small.en on the Medical dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1085
  • Wer: 6.6812

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0268 3.0030 1000 0.1019 6.4189
0.0017 6.0060 2000 0.1010 5.6903
0.0012 9.0090 3000 0.1064 6.6302
0.0001 12.0120 4000 0.1085 6.6812

Framework versions

  • Transformers 4.42.2
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1