t5-small-finetuned-en-to-fr
This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0025
- Bleu: 94.2545
- Gen Len: 14.381
Model description
The model is a t5-small finetuned version.
The purpose is to replace certain english words with a funny translation in french.
For example:
- 'lead' -> 'or'
- 'loser' -> 'gagnant'
- 'fear' -> 'esperez'
- 'fail' -> 'réussir'
- 'data science school' -> 'DataScientest'
- 'data science' -> 'magic'
- 'F1' -> 'Formule 1'
- 'truck' -> 'voiture de sport'
- 'rusty' -> 'splendide'
- 'old' -> 'flambant neuve'
- etc
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
---|---|---|---|---|---|
No log | 1.0 | 2 | 0.0103 | 94.2545 | 14.381 |
No log | 2.0 | 4 | 0.0097 | 94.2545 | 14.381 |
No log | 3.0 | 6 | 0.0093 | 94.2545 | 14.381 |
No log | 4.0 | 8 | 0.0089 | 94.2545 | 14.381 |
No log | 5.0 | 10 | 0.0085 | 94.2545 | 14.381 |
No log | 6.0 | 12 | 0.0081 | 94.2545 | 14.381 |
No log | 7.0 | 14 | 0.0078 | 94.2545 | 14.381 |
No log | 8.0 | 16 | 0.0075 | 94.2545 | 14.381 |
No log | 9.0 | 18 | 0.0072 | 94.2545 | 14.381 |
No log | 10.0 | 20 | 0.0069 | 94.2545 | 14.381 |
No log | 11.0 | 22 | 0.0067 | 94.2545 | 14.381 |
No log | 12.0 | 24 | 0.0064 | 94.2545 | 14.381 |
No log | 13.0 | 26 | 0.0063 | 94.2545 | 14.381 |
No log | 14.0 | 28 | 0.0061 | 94.2545 | 14.381 |
No log | 15.0 | 30 | 0.0059 | 94.2545 | 14.381 |
No log | 16.0 | 32 | 0.0058 | 94.2545 | 14.381 |
No log | 17.0 | 34 | 0.0057 | 94.2545 | 14.381 |
No log | 18.0 | 36 | 0.0055 | 94.2545 | 14.381 |
No log | 19.0 | 38 | 0.0054 | 94.2545 | 14.381 |
No log | 20.0 | 40 | 0.0053 | 94.2545 | 14.381 |
No log | 21.0 | 42 | 0.0052 | 94.2545 | 14.381 |
No log | 22.0 | 44 | 0.0051 | 94.2545 | 14.381 |
No log | 23.0 | 46 | 0.0051 | 94.2545 | 14.381 |
No log | 24.0 | 48 | 0.0050 | 94.2545 | 14.381 |
No log | 25.0 | 50 | 0.0049 | 94.2545 | 14.381 |
No log | 26.0 | 52 | 0.0048 | 94.2545 | 14.381 |
No log | 27.0 | 54 | 0.0047 | 94.2545 | 14.381 |
No log | 28.0 | 56 | 0.0046 | 94.2545 | 14.381 |
No log | 29.0 | 58 | 0.0045 | 94.2545 | 14.381 |
No log | 30.0 | 60 | 0.0045 | 94.2545 | 14.381 |
No log | 31.0 | 62 | 0.0044 | 94.2545 | 14.381 |
No log | 32.0 | 64 | 0.0043 | 94.2545 | 14.381 |
No log | 33.0 | 66 | 0.0042 | 94.2545 | 14.381 |
No log | 34.0 | 68 | 0.0041 | 94.2545 | 14.381 |
No log | 35.0 | 70 | 0.0041 | 94.2545 | 14.381 |
No log | 36.0 | 72 | 0.0040 | 94.2545 | 14.381 |
No log | 37.0 | 74 | 0.0039 | 94.2545 | 14.381 |
No log | 38.0 | 76 | 0.0039 | 94.2545 | 14.381 |
No log | 39.0 | 78 | 0.0038 | 94.2545 | 14.381 |
No log | 40.0 | 80 | 0.0037 | 94.2545 | 14.381 |
No log | 41.0 | 82 | 0.0037 | 94.2545 | 14.381 |
No log | 42.0 | 84 | 0.0036 | 94.2545 | 14.381 |
No log | 43.0 | 86 | 0.0035 | 94.2545 | 14.381 |
No log | 44.0 | 88 | 0.0035 | 94.2545 | 14.381 |
No log | 45.0 | 90 | 0.0034 | 94.2545 | 14.381 |
No log | 46.0 | 92 | 0.0034 | 94.2545 | 14.381 |
No log | 47.0 | 94 | 0.0033 | 94.2545 | 14.381 |
No log | 48.0 | 96 | 0.0033 | 94.2545 | 14.381 |
No log | 49.0 | 98 | 0.0033 | 94.2545 | 14.381 |
No log | 50.0 | 100 | 0.0033 | 94.2545 | 14.381 |
No log | 51.0 | 102 | 0.0032 | 94.2545 | 14.381 |
No log | 52.0 | 104 | 0.0032 | 94.2545 | 14.381 |
No log | 53.0 | 106 | 0.0032 | 94.2545 | 14.381 |
No log | 54.0 | 108 | 0.0032 | 94.2545 | 14.381 |
No log | 55.0 | 110 | 0.0031 | 94.2545 | 14.381 |
No log | 56.0 | 112 | 0.0031 | 94.2545 | 14.381 |
No log | 57.0 | 114 | 0.0031 | 94.2545 | 14.381 |
No log | 58.0 | 116 | 0.0031 | 94.2545 | 14.381 |
No log | 59.0 | 118 | 0.0030 | 94.2545 | 14.381 |
No log | 60.0 | 120 | 0.0030 | 94.2545 | 14.381 |
No log | 61.0 | 122 | 0.0030 | 94.2545 | 14.381 |
No log | 62.0 | 124 | 0.0030 | 94.2545 | 14.381 |
No log | 63.0 | 126 | 0.0029 | 94.2545 | 14.381 |
No log | 64.0 | 128 | 0.0029 | 94.2545 | 14.381 |
No log | 65.0 | 130 | 0.0029 | 94.2545 | 14.381 |
No log | 66.0 | 132 | 0.0029 | 94.2545 | 14.381 |
No log | 67.0 | 134 | 0.0029 | 94.2545 | 14.381 |
No log | 68.0 | 136 | 0.0029 | 94.2545 | 14.381 |
No log | 69.0 | 138 | 0.0028 | 94.2545 | 14.381 |
No log | 70.0 | 140 | 0.0028 | 94.2545 | 14.381 |
No log | 71.0 | 142 | 0.0028 | 94.2545 | 14.381 |
No log | 72.0 | 144 | 0.0028 | 94.2545 | 14.381 |
No log | 73.0 | 146 | 0.0028 | 94.2545 | 14.381 |
No log | 74.0 | 148 | 0.0027 | 94.2545 | 14.381 |
No log | 75.0 | 150 | 0.0027 | 94.2545 | 14.381 |
No log | 76.0 | 152 | 0.0027 | 94.2545 | 14.381 |
No log | 77.0 | 154 | 0.0027 | 94.2545 | 14.381 |
No log | 78.0 | 156 | 0.0027 | 94.2545 | 14.381 |
No log | 79.0 | 158 | 0.0027 | 94.2545 | 14.381 |
No log | 80.0 | 160 | 0.0026 | 94.2545 | 14.381 |
No log | 81.0 | 162 | 0.0026 | 94.2545 | 14.381 |
No log | 82.0 | 164 | 0.0026 | 94.2545 | 14.381 |
No log | 83.0 | 166 | 0.0026 | 94.2545 | 14.381 |
No log | 84.0 | 168 | 0.0026 | 94.2545 | 14.381 |
No log | 85.0 | 170 | 0.0026 | 94.2545 | 14.381 |
No log | 86.0 | 172 | 0.0026 | 94.2545 | 14.381 |
No log | 87.0 | 174 | 0.0026 | 94.2545 | 14.381 |
No log | 88.0 | 176 | 0.0026 | 94.2545 | 14.381 |
No log | 89.0 | 178 | 0.0026 | 94.2545 | 14.381 |
No log | 90.0 | 180 | 0.0026 | 94.2545 | 14.381 |
No log | 91.0 | 182 | 0.0025 | 94.2545 | 14.381 |
No log | 92.0 | 184 | 0.0025 | 94.2545 | 14.381 |
No log | 93.0 | 186 | 0.0025 | 94.2545 | 14.381 |
No log | 94.0 | 188 | 0.0025 | 94.2545 | 14.381 |
No log | 95.0 | 190 | 0.0025 | 94.2545 | 14.381 |
No log | 96.0 | 192 | 0.0025 | 94.2545 | 14.381 |
No log | 97.0 | 194 | 0.0025 | 94.2545 | 14.381 |
No log | 98.0 | 196 | 0.0025 | 94.2545 | 14.381 |
No log | 99.0 | 198 | 0.0025 | 94.2545 | 14.381 |
No log | 100.0 | 200 | 0.0025 | 94.2545 | 14.381 |
Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1
- Datasets 2.13.0
- Tokenizers 0.13.2
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Demosthene-OR/t5-small-finetuned-en-to-fr
Base model
google-t5/t5-small