Edit model card

Wav2Vec2-Large-XLSR-53-Lithuanian

Fine-tuned facebook/wav2vec2-large-xlsr-53 in Lithuanian using the Common Voice

When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:


import torch

import torchaudio

from datasets import load_dataset

from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "lt", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("DeividasM/wav2vec2-large-xlsr-53-lithuanian")

model = Wav2Vec2ForCTC.from_pretrained("DeividasM/wav2vec2-large-xlsr-53-lithuanian")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.

# We need to read the audio files as arrays

def speech_file_to_array_fn(batch):

\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])

\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()

\\treturn batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():

\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))

print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the Lithuanian test data of Common Voice.


import torch

import torchaudio

from datasets import load_dataset, load_metric

from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

import re

test_dataset = load_dataset("common_voice", "lt", split="test")

wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("DeividasM/wav2vec2-large-xlsr-53-lithuanian")

model = Wav2Vec2ForCTC.from_pretrained("DeividasM/wav2vec2-large-xlsr-53-lithuanian")

model.to("cuda")

chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\β€œ]'

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.

# We need to read the audio files as arrays

def speech_file_to_array_fn(batch):

\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()

\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])

\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()

\\treturn batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.

# We need to read the audio files as arrays

def evaluate(batch):

\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

\\twith torch.no_grad():

\\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)

\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)

\\treturn batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 56.55 %

Training

The Common Voice train, validation datasets were used for training.

Downloads last month
48
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train DeividasM/wav2vec2-large-xlsr-53-lithuanian

Spaces using DeividasM/wav2vec2-large-xlsr-53-lithuanian 31

Evaluation results