LLM ITA
Collection
Open-Source Language Models Finetuned for Italian
β’
4 items
β’
Updated
β’
5
For a detailed comparison of model performance, check out the Leaderboard for Italian Language Models.
Here's a breakdown of the performance metrics:
Metric | hellaswag_it acc_norm | arc_it acc_norm | m_mmlu_it 5-shot acc | Average |
---|---|---|---|---|
Accuracy Normalized | 0.6518 | 0.5441 | 0.5729 | 0.5896 |
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL_NAME = "DeepMount00/Llama-3-8b-Ita"
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16).eval()
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
def generate_answer(prompt):
messages = [
{"role": "user", "content": prompt},
]
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=200, do_sample=True,
temperature=0.001)
decoded = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
return decoded[0]
prompt = "Come si apre un file json in python?"
answer = generate_answer(prompt)
print(answer)
[Michele Montebovi]
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 26.58 |
IFEval (0-Shot) | 75.30 |
BBH (3-Shot) | 28.08 |
MATH Lvl 5 (4-Shot) | 5.36 |
GPQA (0-shot) | 7.38 |
MuSR (0-shot) | 11.68 |
MMLU-PRO (5-shot) | 31.69 |
Base model
meta-llama/Meta-Llama-3-8B