|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- cerebras/SlimPajama-627B |
|
- bigcode/starcoderdata |
|
- HuggingFaceH4/ultrachat_200k |
|
- HuggingFaceH4/ultrafeedback_binarized |
|
language: |
|
- en |
|
widget: |
|
- text: "<|system|>\nYou are a chatbot who can help code!</s>\n<|user|>\nWrite me a function to calculate the first 10 digits of the fibonacci sequence in Python and print it out to the CLI.</s>\n<|assistant|>\n" |
|
--- |
|
<div align="center"> |
|
|
|
# TinyLlama-1.1B ---My personal Test update |
|
</div> |
|
|
|
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |
|
|-------------|-------|------|-----:|--------|-----:|---|-----:| |
|
|arc_challenge|Yaml |none | 0|acc |0.2619|± |0.0128| |
|
| | |none | 0|acc_norm|0.2892|± |0.0133| |
|
|arc_easy |Yaml |none | 0|acc |0.4777|± |0.0102| |
|
| | |none | 0|acc_norm|0.4461|± |0.0102| |
|
|boolq |Yaml |none | 0|acc |0.6297|± |0.0084| |
|
|hellaswag |Yaml |none | 0|acc |0.3934|± |0.0049| |
|
| | |none | 0|acc_norm|0.4930|± |0.0050| |
|
|openbookqa |Yaml |none | 0|acc |0.2120|± |0.0183| |
|
| | |none | 0|acc_norm|0.3260|± |0.0210| |
|
|piqa |Yaml |none | 0|acc |0.6915|± |0.0108| |
|
| | |none | 0|acc_norm|0.6877|± |0.0108| |
|
|winogrande |Yaml |none | 0|acc |0.5714|± |0.0139| |
|
|
|
|
|
Llamafactory EVAL |
|
|
|
|
|
!CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \ |
|
--model_name_or_path Deathsquad10/TinyLlama-Remix \ |
|
--template vanilla \ |
|
--task mmlu \ |
|
--split test \ |
|
--lang en \ |
|
--n_shot 5 \ |
|
--use_unsloth \ |
|
--batch_size 1 |
|
|
|
|
|
Average: 26.29 |
|
STEM: 27.10 |
|
Social Sciences: 25.48 |
|
Humanities: 25.62 |
|
Other: 27.26 |
|
|
|
!CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \ |
|
--model_name_or_path Deathsquad10/TinyLlama-Remix \ |
|
--template vanilla \ |
|
--task cmmlu \ |
|
--split test \ |
|
--lang en \ |
|
--n_shot 5 \ |
|
--use_unsloth \ |
|
--batch_size 2 |
|
|
|
|
|
Average: 24.98 |
|
STEM: 25.52 |
|
Social Sciences: 24.70 |
|
Humanities: 24.59 |
|
Other: 25.19 |
|
https://github.com/jzhang38/TinyLlama |
|
|
|
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01. |
|
|
|
|
|
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. |
|
|
|
#### This Model |
|
This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T). **We follow [HF's Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/edit/main/README.md)'s training recipe.** The model was " initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. |
|
We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4." |
|
|
|
|
|
#### How to use |
|
You will need the transformers>=4.34 |
|
Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information. |
|
|
|
```python |
|
# Install transformers from source - only needed for versions <= v4.34 |
|
# pip install git+https://github.com/huggingface/transformers.git |
|
# pip install accelerate |
|
import torch |
|
from transformers import pipeline |
|
pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto") |
|
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating |
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "You are a friendly chatbot who always responds in the style of a pirate", |
|
}, |
|
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"}, |
|
] |
|
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
# <|system|> |
|
# You are a friendly chatbot who always responds in the style of a pirate.</s> |
|
# <|user|> |
|
# How many helicopters can a human eat in one sitting?</s> |
|
# <|assistant|> |
|
# ... |
|
``` |