Edit model card

bert-small-phishing

This model is a fine-tuned version of prajjwal1/bert-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1006
  • Accuracy: 0.9766
  • Precision: 0.9713
  • Recall: 0.9669
  • F1: 0.9691

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.202 1.0 762 0.0941 0.9717 0.9728 0.9520 0.9623
0.077 2.0 1524 0.0964 0.9764 0.9757 0.9617 0.9686
0.0428 3.0 2286 0.0992 0.9786 0.9739 0.9695 0.9717
0.0248 4.0 3048 0.1006 0.9766 0.9713 0.9669 0.9691

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
16
Safetensors
Model size
28.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for David-Egea/bert-small-phishing

Finetuned
(11)
this model

Dataset used to train David-Egea/bert-small-phishing