metadata
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:64116
- loss:ContrastiveLoss
widget:
- source_sentence: مبل سلتان
sentences:
- روسری جین شش عددی عمده نخی
- مبل راحتی چستر سالوادور مبل راحتی چستر مبل راحتی چستر مکانیزم
- پاور سانروف فابریک برلیانس
- source_sentence: لباس پلیسی
sentences:
- جا عودی
- لباس خواب کاستوم فانتزی پلیسی زنانه
- >-
روغن حنا (پرپشت کننده مو ریزش مو تقویت مو تقویت ابرو جلوگیری از
سفیدی مو شوره مو خشکی پوست سر خارش پوست سر)
- source_sentence: قابلمه سنگی
sentences:
- قابلمه سنگی آقای سنگی 10 نفره
- گاز مبرد R134a پوکا (POKKA R134)
- کفش فوتبال بچه گانه آدیداس طرح اصلی مشکی سفید Adidas
- source_sentence: لوازم آرایشی
sentences:
- >-
جعبه لوازم آرایشی قابل حمل سازماندهنده لوازم آرایش مسافرتی با روکش آینه
چراغدار LED لوازم آرایشی
- کفش پاشنه بلند مجلسی دخترانه
- وکتور بنر فارسی جشن تولد با کیک و جعبه کادو
- source_sentence: پوست مصنوعی
sentences:
- دستگیره حیاطی تک پیچ سرباز دستگیره تک پیچ درب حیاطی سرباز
- مبل سلطنتی
- کیف پوست ماری مستطیل جنس چرم مصنوعی کیف پوست ماری مستطیل
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.7607017543859649
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7412481904029846
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.834358186010761
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7125277519226074
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.7491373360938578
name: Cosine Precision
- type: cosine_recall
value: 0.9414570685169124
name: Cosine Recall
- type: cosine_ap
value: 0.8461870777524143
name: Cosine Ap
- type: dot_accuracy
value: 0.7104561403508772
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 14.821020126342773
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.8054054054054054
name: Dot F1
- type: dot_f1_threshold
value: 14.108308792114258
name: Dot F1 Threshold
- type: dot_precision
value: 0.7062765609676365
name: Dot Precision
- type: dot_recall
value: 0.9369037294015612
name: Dot Recall
- type: dot_ap
value: 0.8122928586516915
name: Dot Ap
- type: manhattan_accuracy
value: 0.7528421052631579
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 53.40993118286133
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.828743211792087
name: Manhattan F1
- type: manhattan_f1_threshold
value: 55.60980987548828
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.7496491228070176
name: Manhattan Precision
- type: manhattan_recall
value: 0.9264960971379012
name: Manhattan Recall
- type: manhattan_ap
value: 0.8423084093127031
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.7536842105263157
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 3.543578863143921
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.829423689545323
name: Euclidean F1
- type: euclidean_f1_threshold
value: 3.609351396560669
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.7475204454497999
name: Euclidean Precision
- type: euclidean_recall
value: 0.9314830875975716
name: Euclidean Recall
- type: euclidean_ap
value: 0.8422044822515327
name: Euclidean Ap
- type: max_accuracy
value: 0.7607017543859649
name: Max Accuracy
- type: max_accuracy_threshold
value: 53.40993118286133
name: Max Accuracy Threshold
- type: max_f1
value: 0.834358186010761
name: Max F1
- type: max_f1_threshold
value: 55.60980987548828
name: Max F1 Threshold
- type: max_precision
value: 0.7496491228070176
name: Max Precision
- type: max_recall
value: 0.9414570685169124
name: Max Recall
- type: max_ap
value: 0.8461870777524143
name: Max Ap
SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("DashReza7/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2_FINETUNED_on_torob_data_v6")
# Run inference
sentences = [
'پوست مصنوعی',
'کیف پوست ماری مستطیل جنس چرم مصنوعی کیف پوست ماری مستطیل',
'مبل سلطنتی',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.7607 |
cosine_accuracy_threshold | 0.7412 |
cosine_f1 | 0.8344 |
cosine_f1_threshold | 0.7125 |
cosine_precision | 0.7491 |
cosine_recall | 0.9415 |
cosine_ap | 0.8462 |
dot_accuracy | 0.7105 |
dot_accuracy_threshold | 14.821 |
dot_f1 | 0.8054 |
dot_f1_threshold | 14.1083 |
dot_precision | 0.7063 |
dot_recall | 0.9369 |
dot_ap | 0.8123 |
manhattan_accuracy | 0.7528 |
manhattan_accuracy_threshold | 53.4099 |
manhattan_f1 | 0.8287 |
manhattan_f1_threshold | 55.6098 |
manhattan_precision | 0.7496 |
manhattan_recall | 0.9265 |
manhattan_ap | 0.8423 |
euclidean_accuracy | 0.7537 |
euclidean_accuracy_threshold | 3.5436 |
euclidean_f1 | 0.8294 |
euclidean_f1_threshold | 3.6094 |
euclidean_precision | 0.7475 |
euclidean_recall | 0.9315 |
euclidean_ap | 0.8422 |
max_accuracy | 0.7607 |
max_accuracy_threshold | 53.4099 |
max_f1 | 0.8344 |
max_f1_threshold | 55.6098 |
max_precision | 0.7496 |
max_recall | 0.9415 |
max_ap | 0.8462 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 256learning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | max_ap |
---|---|---|---|
None | 0 | - | 0.7365 |
1.9920 | 500 | 0.0242 | - |
2.0 | 502 | - | 0.8462 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}