DashReza7's picture
Add new SentenceTransformer model.
a287af5 verified
metadata
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
language: []
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - dot_accuracy
  - dot_accuracy_threshold
  - dot_f1
  - dot_f1_threshold
  - dot_precision
  - dot_recall
  - dot_ap
  - manhattan_accuracy
  - manhattan_accuracy_threshold
  - manhattan_f1
  - manhattan_f1_threshold
  - manhattan_precision
  - manhattan_recall
  - manhattan_ap
  - euclidean_accuracy
  - euclidean_accuracy_threshold
  - euclidean_f1
  - euclidean_f1_threshold
  - euclidean_precision
  - euclidean_recall
  - euclidean_ap
  - max_accuracy
  - max_accuracy_threshold
  - max_f1
  - max_f1_threshold
  - max_precision
  - max_recall
  - max_ap
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:64116
  - loss:ContrastiveLoss
widget:
  - source_sentence: مبل سلتان
    sentences:
      - روسری جین شش عددی عمده نخی
      - مبل راحتی چستر سالوادور مبل راحتی چستر مبل راحتی چستر مکانیزم
      - پاور سانروف فابریک برلیانس
  - source_sentence: لباس پلیسی
    sentences:
      - جا عودی
      - لباس خواب کاستوم فانتزی پلیسی زنانه
      - >-
        روغن حنا (پرپشت کننده مو  ریزش مو  تقویت مو  تقویت ابرو  جلوگیری از
        سفیدی مو  شوره مو  خشکی پوست سر  خارش پوست سر)
  - source_sentence: قابلمه سنگی
    sentences:
      - قابلمه سنگی آقای سنگی 10 نفره
      - گاز مبرد R134a پوکا (POKKA R134)
      - کفش فوتبال بچه گانه آدیداس طرح اصلی مشکی سفید Adidas
  - source_sentence: لوازم آرایشی
    sentences:
      - >-
        جعبه لوازم آرایشی قابل حمل سازمان‌دهنده لوازم آرایش مسافرتی با روکش آینه
        چراغ‌دار LED لوازم آرایشی
      - کفش پاشنه بلند مجلسی دخترانه
      - وکتور بنر فارسی جشن تولد با کیک و جعبه کادو
  - source_sentence: پوست مصنوعی
    sentences:
      - دستگیره حیاطی تک پیچ سرباز دستگیره تک پیچ درب حیاطی سرباز
      - مبل سلطنتی
      - کیف پوست ماری مستطیل جنس چرم مصنوعی کیف پوست ماری مستطیل
model-index:
  - name: >-
      SentenceTransformer based on
      sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy
            value: 0.7607017543859649
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.7412481904029846
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.834358186010761
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.7125277519226074
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.7491373360938578
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9414570685169124
            name: Cosine Recall
          - type: cosine_ap
            value: 0.8461870777524143
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.7104561403508772
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 14.821020126342773
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.8054054054054054
            name: Dot F1
          - type: dot_f1_threshold
            value: 14.108308792114258
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.7062765609676365
            name: Dot Precision
          - type: dot_recall
            value: 0.9369037294015612
            name: Dot Recall
          - type: dot_ap
            value: 0.8122928586516915
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.7528421052631579
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 53.40993118286133
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.828743211792087
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 55.60980987548828
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.7496491228070176
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.9264960971379012
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.8423084093127031
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.7536842105263157
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 3.543578863143921
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.829423689545323
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 3.609351396560669
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.7475204454497999
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.9314830875975716
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.8422044822515327
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.7607017543859649
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 53.40993118286133
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.834358186010761
            name: Max F1
          - type: max_f1_threshold
            value: 55.60980987548828
            name: Max F1 Threshold
          - type: max_precision
            value: 0.7496491228070176
            name: Max Precision
          - type: max_recall
            value: 0.9414570685169124
            name: Max Recall
          - type: max_ap
            value: 0.8461870777524143
            name: Max Ap

SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("DashReza7/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2_FINETUNED_on_torob_data_v6")
# Run inference
sentences = [
    'پوست مصنوعی',
    'کیف پوست ماری مستطیل جنس چرم مصنوعی کیف پوست ماری مستطیل',
    'مبل سلطنتی',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.7607
cosine_accuracy_threshold 0.7412
cosine_f1 0.8344
cosine_f1_threshold 0.7125
cosine_precision 0.7491
cosine_recall 0.9415
cosine_ap 0.8462
dot_accuracy 0.7105
dot_accuracy_threshold 14.821
dot_f1 0.8054
dot_f1_threshold 14.1083
dot_precision 0.7063
dot_recall 0.9369
dot_ap 0.8123
manhattan_accuracy 0.7528
manhattan_accuracy_threshold 53.4099
manhattan_f1 0.8287
manhattan_f1_threshold 55.6098
manhattan_precision 0.7496
manhattan_recall 0.9265
manhattan_ap 0.8423
euclidean_accuracy 0.7537
euclidean_accuracy_threshold 3.5436
euclidean_f1 0.8294
euclidean_f1_threshold 3.6094
euclidean_precision 0.7475
euclidean_recall 0.9315
euclidean_ap 0.8422
max_accuracy 0.7607
max_accuracy_threshold 53.4099
max_f1 0.8344
max_f1_threshold 55.6098
max_precision 0.7496
max_recall 0.9415
max_ap 0.8462

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • learning_rate: 2e-05
  • num_train_epochs: 2
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss max_ap
None 0 - 0.7365
1.9920 500 0.0242 -
2.0 502 - 0.8462

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.4
  • PyTorch: 2.4.0+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, 
    title={Dimensionality Reduction by Learning an Invariant Mapping}, 
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}