See axolotl config
axolotl version: 0.4.1
base_model: Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code:
# wandb configuration
wandb_project: l3.1-8b-dans-instruct
wandb_watch:
wandb_run_id:
wandb_log_model:
# where to save the finished model to
output_dir: ./l3.1-8b-dans-instruct
# dataset settings (local or huggingface repo)
datasets:
- path: PocketDoc/Dans-MemoryCore-CoreCurriculum-Small
type: sharegpt
conversation: chatml
- path: AquaV/Energetic-Materials-Sharegpt
type: sharegpt
conversation: chatml
- path: AquaV/Chemical-Biological-Safety-Applications-Sharegpt
type: sharegpt
conversation: chatml
- path: AquaV/US-Army-Survival-Sharegpt
type: sharegpt
conversation: chatml
- path: AquaV/Resistance-Sharegpt
type: sharegpt
conversation: chatml
- path: AquaV/Interrogation-Sharegpt
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Mathmaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Benchmaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Codemaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Taskmaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-ASCIIMaxx-Wordart
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Prosemaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Toolmaxx
type: sharegpt
conversation: chatml
chat_template: chatml
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
dataset_prepared_path: ./l3.1-8b-dans-instruct-data
val_set_size: 0.03
lora_model_dir:
sequence_len: 8192
# use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true'
sample_packing: true
eval_sample_packing: true
# you can set these packing optimizations AFTER starting a training at least once.
# The trainer will provide recommended values for these values.
pad_to_sequence_len: true
#rope_scaling:
#type: # linear | dynamic
#factor: # float (2 for 2x)
adapter: # blank for full finetune
lora_r: 64
lora_alpha: 64
lora_dropout: 0.2
lora_target_linear: True
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lora_modules_to_save:
- embed_tokens
- lm_head
lora_fan_in_fan_out:
gradient_accumulation_steps: 32
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0000015
cosine_min_lr_ratio:
train_on_inputs: false
group_by_length: true
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 15
eval_steps: 25
# save_steps: 100
saves_per_epoch: 3
debug: false
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token: <|im_end|>
l3.1-8b-dans-instruct
This model is a fine-tuned version of Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6699
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 15
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9964 | 0.0041 | 1 | 1.0348 |
0.8433 | 0.1025 | 25 | 0.8220 |
0.7916 | 0.2049 | 50 | 0.7465 |
0.7381 | 0.3074 | 75 | 0.7152 |
0.6802 | 0.4098 | 100 | 0.7005 |
0.7764 | 0.5123 | 125 | 0.6917 |
0.6518 | 0.6148 | 150 | 0.6871 |
0.6864 | 0.7172 | 175 | 0.6831 |
0.7217 | 0.8197 | 200 | 0.6803 |
0.7072 | 0.9221 | 225 | 0.6781 |
0.6953 | 1.0287 | 250 | 0.6764 |
0.8013 | 1.1313 | 275 | 0.6752 |
0.6296 | 1.2338 | 300 | 0.6738 |
0.7553 | 1.3364 | 325 | 0.6729 |
0.6749 | 1.4390 | 350 | 0.6722 |
0.6619 | 1.5415 | 375 | 0.6715 |
0.6527 | 1.6441 | 400 | 0.6712 |
0.7654 | 1.7467 | 425 | 0.6707 |
0.7256 | 1.8492 | 450 | 0.6705 |
0.6921 | 1.9518 | 475 | 0.6701 |
0.6982 | 2.0523 | 500 | 0.6701 |
0.6997 | 2.1548 | 525 | 0.6701 |
0.6563 | 2.2574 | 550 | 0.6700 |
0.6564 | 2.3599 | 575 | 0.6699 |
0.6248 | 2.4624 | 600 | 0.6699 |
0.6893 | 2.5650 | 625 | 0.6699 |
0.6633 | 2.6675 | 650 | 0.6698 |
0.7045 | 2.7701 | 675 | 0.6698 |
0.7784 | 2.8726 | 700 | 0.6698 |
0.7798 | 2.9751 | 725 | 0.6699 |
Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 12
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Dans-DiscountModels/Dans-Instruct-Mix-8b-ChatML-V0.0.2
Base model
Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML