Edit model card

estudiante_MC318_profesor_MViT_akl_VIOPERU

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6486
  • Accuracy: 0.6696
  • F1: 0.6636
  • Precision: 0.6828
  • Recall: 0.6696
  • Roc Auc: 0.7280

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 30
  • eval_batch_size: 30
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 21
  • training_steps: 210
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Roc Auc
3.1309 1.0095 10 0.6797 0.5536 0.4805 0.6224 0.5536 0.6633
2.7485 2.0190 20 0.6672 0.5357 0.4944 0.5530 0.5357 0.6747
2.7139 3.0286 30 0.6622 0.6429 0.6410 0.6458 0.6429 0.6709
2.5183 4.0381 40 0.6592 0.6607 0.6597 0.6626 0.6607 0.6747
2.3888 6.0095 50 0.6528 0.6786 0.6782 0.6795 0.6786 0.6760
2.2645 7.0190 60 0.6537 0.6786 0.6748 0.6872 0.6786 0.6722
2.1218 8.0286 70 0.6496 0.6786 0.6748 0.6872 0.6786 0.6735
1.8439 9.0381 80 0.6484 0.6607 0.6580 0.6660 0.6607 0.6607
1.8092 11.0095 90 0.6502 0.6607 0.6553 0.6714 0.6607 0.6518
1.667 12.0190 100 0.6523 0.6607 0.6580 0.6660 0.6607 0.6582

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.0.1+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.2
Downloads last month
4
Safetensors
Model size
11.6M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .