nreimers's picture
Update README.md
0909d6e
---
tags:
- mteb
model-index:
- name: embed-multilingual-v3.0
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 77.85074626865672
- type: ap
value: 41.53151744002314
- type: f1
value: 71.94656880817726
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 95.600375
- type: ap
value: 93.57882128753579
- type: f1
value: 95.59945484944305
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 49.794
- type: f1
value: 48.740439663130985
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 55.105000000000004
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 48.15653426568874
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 40.78876256237919
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 62.12873500780318
- type: mrr
value: 75.87037769863255
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 86.01183720167818
- type: cos_sim_spearman
value: 85.00916590717613
- type: euclidean_pearson
value: 84.072733561361
- type: euclidean_spearman
value: 85.00916590717613
- type: manhattan_pearson
value: 83.89233507343208
- type: manhattan_spearman
value: 84.87482549674115
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 86.09415584415584
- type: f1
value: 86.05173549773973
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 40.49773000165541
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 36.909633073998876
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 49.481
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 47.449999999999996
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 59.227
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 37.729
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 29.673
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 44.278
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 43.218
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 40.63741666666667
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 33.341
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 29.093999999999998
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 40.801
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 40.114
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 33.243
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 29.958000000000002
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 41.004000000000005
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 48.150000000000006
- type: f1
value: 43.69803436468346
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 88.532
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 44.105
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 70.612
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 93.9672
- type: ap
value: 90.72947025321227
- type: f1
value: 93.96271599852622
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 43.447
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 94.92476060191517
- type: f1
value: 94.69383758972194
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 78.8873689010488
- type: f1
value: 62.537485052253885
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 74.51244115669132
- type: f1
value: 72.40074466830153
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 79.00470746469401
- type: f1
value: 79.03758200183096
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 36.183215937303736
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 33.443759055792135
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 32.58713095176127
- type: mrr
value: 33.7326038566206
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 36.417
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 63.415
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 88.924
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 58.10997801688676
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 65.02444843766075
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 19.339000000000002
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 86.61540076033945
- type: cos_sim_spearman
value: 82.1820253476181
- type: euclidean_pearson
value: 83.73901215845989
- type: euclidean_spearman
value: 82.182021064594
- type: manhattan_pearson
value: 83.76685139192031
- type: manhattan_spearman
value: 82.14074705306663
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 85.62241109228789
- type: cos_sim_spearman
value: 77.62042143066208
- type: euclidean_pearson
value: 82.77237785274072
- type: euclidean_spearman
value: 77.62042142290566
- type: manhattan_pearson
value: 82.70945589621266
- type: manhattan_spearman
value: 77.57245632826351
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 84.8307075352031
- type: cos_sim_spearman
value: 85.15620774806095
- type: euclidean_pearson
value: 84.21956724564915
- type: euclidean_spearman
value: 85.15620774806095
- type: manhattan_pearson
value: 84.0677597021641
- type: manhattan_spearman
value: 85.02572172855729
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 83.33749463516592
- type: cos_sim_spearman
value: 80.01967438481185
- type: euclidean_pearson
value: 82.16884494022196
- type: euclidean_spearman
value: 80.01967218194336
- type: manhattan_pearson
value: 81.94431512413773
- type: manhattan_spearman
value: 79.81636247503731
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 88.2070761097028
- type: cos_sim_spearman
value: 88.92297656560552
- type: euclidean_pearson
value: 87.95961374550303
- type: euclidean_spearman
value: 88.92298798854765
- type: manhattan_pearson
value: 87.85515971478168
- type: manhattan_spearman
value: 88.8100644762342
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 85.48103354546488
- type: cos_sim_spearman
value: 86.91850928862898
- type: euclidean_pearson
value: 86.06766986527145
- type: euclidean_spearman
value: 86.91850928862898
- type: manhattan_pearson
value: 86.02705585360717
- type: manhattan_spearman
value: 86.86666545434721
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 90.30267248880148
- type: cos_sim_spearman
value: 90.08752166657892
- type: euclidean_pearson
value: 90.4697525265135
- type: euclidean_spearman
value: 90.08752166657892
- type: manhattan_pearson
value: 90.57174978064741
- type: manhattan_spearman
value: 90.212834942229
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 67.10616236380835
- type: cos_sim_spearman
value: 66.81483164137016
- type: euclidean_pearson
value: 68.48505128040803
- type: euclidean_spearman
value: 66.81483164137016
- type: manhattan_pearson
value: 68.46133268524885
- type: manhattan_spearman
value: 66.83684227990202
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 87.12768629069949
- type: cos_sim_spearman
value: 88.78683817318573
- type: euclidean_pearson
value: 88.47603251297261
- type: euclidean_spearman
value: 88.78683817318573
- type: manhattan_pearson
value: 88.46483630890225
- type: manhattan_spearman
value: 88.76593424921617
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 84.30886658431281
- type: mrr
value: 95.5964251797585
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 70.04599999999999
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.87524752475248
- type: cos_sim_ap
value: 96.79160651306724
- type: cos_sim_f1
value: 93.57798165137615
- type: cos_sim_precision
value: 95.42619542619542
- type: cos_sim_recall
value: 91.8
- type: dot_accuracy
value: 99.87524752475248
- type: dot_ap
value: 96.79160651306724
- type: dot_f1
value: 93.57798165137615
- type: dot_precision
value: 95.42619542619542
- type: dot_recall
value: 91.8
- type: euclidean_accuracy
value: 99.87524752475248
- type: euclidean_ap
value: 96.79160651306724
- type: euclidean_f1
value: 93.57798165137615
- type: euclidean_precision
value: 95.42619542619542
- type: euclidean_recall
value: 91.8
- type: manhattan_accuracy
value: 99.87326732673267
- type: manhattan_ap
value: 96.7574606340297
- type: manhattan_f1
value: 93.45603271983639
- type: manhattan_precision
value: 95.60669456066945
- type: manhattan_recall
value: 91.4
- type: max_accuracy
value: 99.87524752475248
- type: max_ap
value: 96.79160651306724
- type: max_f1
value: 93.57798165137615
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 68.12288811917144
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 35.22267280169542
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 52.39780995606098
- type: mrr
value: 53.26826563958916
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 31.15118979569649
- type: cos_sim_spearman
value: 30.99428921914572
- type: dot_pearson
value: 31.151189338601924
- type: dot_spearman
value: 30.99428921914572
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 83.372
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 32.698
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 71.1998
- type: ap
value: 14.646205259325157
- type: f1
value: 54.96172518137252
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 62.176004527447645
- type: f1
value: 62.48549068096645
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 50.13767789739772
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 86.38016331882935
- type: cos_sim_ap
value: 75.1635976260804
- type: cos_sim_f1
value: 69.29936305732484
- type: cos_sim_precision
value: 66.99507389162561
- type: cos_sim_recall
value: 71.76781002638522
- type: dot_accuracy
value: 86.38016331882935
- type: dot_ap
value: 75.16359359202374
- type: dot_f1
value: 69.29936305732484
- type: dot_precision
value: 66.99507389162561
- type: dot_recall
value: 71.76781002638522
- type: euclidean_accuracy
value: 86.38016331882935
- type: euclidean_ap
value: 75.16360246558416
- type: euclidean_f1
value: 69.29936305732484
- type: euclidean_precision
value: 66.99507389162561
- type: euclidean_recall
value: 71.76781002638522
- type: manhattan_accuracy
value: 86.27883411813792
- type: manhattan_ap
value: 75.02872038741897
- type: manhattan_f1
value: 69.29256284011403
- type: manhattan_precision
value: 68.07535641547861
- type: manhattan_recall
value: 70.55408970976254
- type: max_accuracy
value: 86.38016331882935
- type: max_ap
value: 75.16360246558416
- type: max_f1
value: 69.29936305732484
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 89.39729110878255
- type: cos_sim_ap
value: 86.48560260020555
- type: cos_sim_f1
value: 79.35060602690982
- type: cos_sim_precision
value: 76.50632549496105
- type: cos_sim_recall
value: 82.41453649522637
- type: dot_accuracy
value: 89.39729110878255
- type: dot_ap
value: 86.48559829915334
- type: dot_f1
value: 79.35060602690982
- type: dot_precision
value: 76.50632549496105
- type: dot_recall
value: 82.41453649522637
- type: euclidean_accuracy
value: 89.39729110878255
- type: euclidean_ap
value: 86.48559993122497
- type: euclidean_f1
value: 79.35060602690982
- type: euclidean_precision
value: 76.50632549496105
- type: euclidean_recall
value: 82.41453649522637
- type: manhattan_accuracy
value: 89.36042224550782
- type: manhattan_ap
value: 86.47238558562499
- type: manhattan_f1
value: 79.24500641378047
- type: manhattan_precision
value: 75.61726236273344
- type: manhattan_recall
value: 83.23837388358484
- type: max_accuracy
value: 89.39729110878255
- type: max_ap
value: 86.48560260020555
- type: max_f1
value: 79.35060602690982
---
# Cohere embed-multilingual-v3.0
This repository contains the tokenizer for the Cohere `embed-multilingual-v3.0` model. See our blogpost [Cohere Embed V3](https://txt.cohere.com/introducing-embed-v3/) for more details on this model.
You can use the embedding model either via the Cohere API, AWS SageMaker or in your private deployments.
## Usage Cohere API
The following code snippet shows the usage of the Cohere API. Install the cohere SDK via:
```
pip install -U cohere
```
Get your free API key on: www.cohere.com
```python
# This snippet shows and example how to use the Cohere Embed V3 models for semantic search.
# Make sure to have the Cohere SDK in at least v4.30 install: pip install -U cohere
# Get your API key from: www.cohere.com
import cohere
import numpy as np
cohere_key = "{YOUR_COHERE_API_KEY}" #Get your API key from www.cohere.com
co = cohere.Client(cohere_key)
docs = ["The capital of France is Paris",
"PyTorch is a machine learning framework based on the Torch library.",
"The average cat lifespan is between 13-17 years"]
#Encode your documents with input type 'search_document'
doc_emb = co.embed(docs, input_type="search_document", model="embed-multilingual-v3.0").embeddings
doc_emb = np.asarray(doc_emb)
#Encode your query with input type 'search_query'
query = "What is Pytorch"
query_emb = co.embed([query], input_type="search_query", model="embed-multilingual-v3.0").embeddings
query_emb = np.asarray(query_emb)
query_emb.shape
#Compute the dot product between query embedding and document embedding
scores = np.dot(query_emb, doc_emb.T)[0]
#Find the highest scores
max_idx = np.argsort(-scores)
print(f"Query: {query}")
for idx in max_idx:
print(f"Score: {scores[idx]:.2f}")
print(docs[idx])
print("--------")
```
## Usage AWS SageMaker
The embedding model can be privately deployed in your AWS Cloud using our [AWS SageMaker marketplace offering](https://aws.amazon.com/marketplace/pp/prodview-z6huxszcqc25i). It runs privately in your VPC, with latencies as low as 5ms for query encoding.
## Usage AWS Bedrock
Soon the model will also be available via AWS Bedrock. Stay tuned
## Private Deployment
You want to run the model on your own hardware? [Contact Sales](https://cohere.com/contact-sales) to learn more.
## Supported Languages
This model was trained on nearly 1B English training pairs and nearly 0.5B Non-English training pairs from 100+ languages.
Evaluation results can be found in the [Embed V3.0 Benchmark Results spreadsheet](https://docs.google.com/spreadsheets/d/1w7gnHWMDBdEUrmHgSfDnGHJgVQE5aOiXCCwO3uNH_mI/edit?usp=sharing).