|
--- |
|
language: fr |
|
license: mit |
|
library_name: transformers |
|
tags: |
|
- audio |
|
- audio-to-audio |
|
- speech |
|
datasets: |
|
- Cnam-LMSSC/vibravox |
|
model-index: |
|
- name: EBEN(M=4,P=1,Q=4) |
|
results: |
|
- task: |
|
name: Bandwidth Extension |
|
type: speech-enhancement |
|
dataset: |
|
name: Vibravox["temple_vibration_pickup"] |
|
type: Cnam-LMSSC/vibravox |
|
args: fr |
|
metrics: |
|
- name: Test STOI, in-domain training |
|
type: stoi |
|
value: 0.7634 |
|
- name: Test Noresqa-MOS, in-domain training |
|
type: n-mos |
|
value: 3.632 |
|
--- |
|
|
|
<p align="center"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/65302a613ecbe51d6a6ddcec/zhB1fh-c0pjlj-Tr4Vpmr.png" style="object-fit:contain; width:280px; height:280px;" > |
|
</p> |
|
|
|
# Model Card |
|
|
|
- **Developed by:** [Cnam-LMSSC](https://huggingface.co/Cnam-LMSSC) |
|
- **Model:** [EBEN(M=4,P=1,Q=4)](https://github.com/jhauret/vibravox/blob/main/vibravox/torch_modules/dnn/eben_generator.py) (see [publication in IEEE TASLP](https://ieeexplore.ieee.org/document/10244161) - [arXiv link](https://arxiv.org/abs/2303.10008)) |
|
- **Language:** French |
|
- **License:** MIT |
|
- **Training dataset:** `speech_clean` subset of [Cnam-LMSSC/vibravox](https://huggingface.co/datasets/Cnam-LMSSC/vibravox) (see [VibraVox paper on arXiV](https://arxiv.org/abs/2407.11828)) |
|
- **Samplerate for usage:** 16kHz |
|
|
|
## Overview |
|
|
|
This bandwidth extension model, trained on [Vibravox](https://huggingface.co/datasets/Cnam-LMSSC/vibravox) body conduction sensor data, enhances body-conducted speech audio by denoising and regenerating mid and high frequencies from low-frequency content. |
|
|
|
## Disclaimer |
|
This model, trained for **a specific non-conventional speech sensor**, is intended to be used with **in-domain data**. Using it with other sensor data may lead to suboptimal performance. |
|
|
|
## Link to BWE models trained on other body conducted sensors : |
|
|
|
The entry point to all EBEN models for Bandwidth Extension (BWE) is available at [https://huggingface.co/Cnam-LMSSC/vibravox_EBEN_models](https://huggingface.co/Cnam-LMSSC/vibravox_EBEN_models). |
|
|
|
## Training procedure |
|
|
|
Detailed instructions for reproducing the experiments are available on the [jhauret/vibravox](https://github.com/jhauret/vibravox) Github repository. |
|
|
|
## Inference script : |
|
|
|
```python |
|
import torch, torchaudio |
|
from vibravox.torch_modules.dnn.eben_generator import EBENGenerator |
|
from datasets import load_dataset |
|
|
|
model = EBENGenerator.from_pretrained("Cnam-LMSSC/EBEN_temple_vibration_pickup") |
|
test_dataset = load_dataset("Cnam-LMSSC/vibravox", "speech_clean", split="test", streaming=True) |
|
|
|
audio_48kHz = torch.Tensor(next(iter(test_dataset))["audio.temple_vibration_pickup"]["array"]) |
|
audio_16kHz = torchaudio.functional.resample(audio_48kHz, orig_freq=48_000, new_freq=16_000) |
|
|
|
cut_audio_16kHz = model.cut_to_valid_length(audio_16kHz[None, None, :]) |
|
enhanced_audio_16kHz, enhanced_speech_decomposed = model(cut_audio_16kHz) |
|
``` |
|
|
|
|