deberta-v3-base_finetuned_bluegennx_run2.6
This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0968
- Overall Precision: 0.6921
- Overall Recall: 0.7279
- Overall F1: 0.7096
- Overall Accuracy: 0.9662
- Aadhar Card F1: 0.7499
- Age F1: 0.5816
- City F1: 0.7306
- Country F1: 0.6782
- Creditcardcvv F1: 0.7220
- Creditcardnumber F1: 0.7364
- Currency F1: 0.6681
- Currencyname F1: 0.0887
- Date F1: 0.6695
- Dateofbirth F1: 0.6437
- Email F1: 0.6486
- Expiry Date F1: 0.5623
- Organization F1: 0.7393
- Pan Card F1: 0.7191
- Person F1: 0.8088
- Phonenumber F1: 0.7218
- Secondary Address F1: 0.6801
- State F1: 0.7525
- Street F1: 0.8529
- Time F1: 0.7545
- Url F1: 0.5520
- Us Ssn F1: 0.9069
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 36
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 3
Training results
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for C4Scale/deberta-v3-base_finetuned_bluegennx_run2.6
Base model
microsoft/deberta-v3-base