al-MiniLM-L6-v2 / README.md
BoghdadyJR's picture
Add new SentenceTransformer model.
934a9a4 verified
metadata
base_model: sentence-transformers/all-mpnet-base-v2
datasets:
  - code-search-net/code_search_net
language:
  - code
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:20000
  - loss:CoSENTLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: KeypointsOnImage.to_xy_array
    sentences:
      - |-
        def to_xy_array(self):
                """
                Convert keypoint coordinates to ``(N,2)`` array.

                Returns
                -------
                (N, 2) ndarray
                    Array containing the coordinates of all keypoints.
                    Shape is ``(N,2)`` with coordinates in xy-form.

                """
                result = np.zeros((len(self.keypoints), 2), dtype=np.float32)
                for i, keypoint in enumerate(self.keypoints):
                    result[i, 0] = keypoint.x
                    result[i, 1] = keypoint.y
                return result
      - |-
        def _generateMetricSpecs(options):
          """ Generates the Metrics for a given InferenceType

          Parameters:
          -------------------------------------------------------------------------
          options: ExpGenerator options
          retval: (metricsList, optimizeMetricLabel)
                    metricsList: list of metric string names
                    optimizeMetricLabel: Name of the metric which to optimize over

          """
          inferenceType = options['inferenceType']
          inferenceArgs = options['inferenceArgs']
          predictionSteps = inferenceArgs['predictionSteps']
          metricWindow = options['metricWindow']
          if metricWindow is None:
            metricWindow = int(Configuration.get("nupic.opf.metricWindow"))

          metricSpecStrings = []
          optimizeMetricLabel = ""

          # -----------------------------------------------------------------------
          # Generate the metrics specified by the expGenerator paramters
          metricSpecStrings.extend(_generateExtraMetricSpecs(options))

          # -----------------------------------------------------------------------

          optimizeMetricSpec = None
          # If using a dynamically computed prediction steps (i.e. when swarming
          #  over aggregation is requested), then we will plug in the variable
          #  predictionSteps in place of the statically provided predictionSteps
          #  from the JSON description.
          if options['dynamicPredictionSteps']:
            assert len(predictionSteps) == 1
            predictionSteps = ['$REPLACE_ME']

          # -----------------------------------------------------------------------
          # Metrics for temporal prediction
          if inferenceType in (InferenceType.TemporalNextStep,
                               InferenceType.TemporalAnomaly,
                               InferenceType.TemporalMultiStep,
                               InferenceType.NontemporalMultiStep,
                               InferenceType.NontemporalClassification,
                               'MultiStep'):

            predictedFieldName, predictedFieldType = _getPredictedField(options)
            isCategory = _isCategory(predictedFieldType)
            metricNames = ('avg_err',) if isCategory else ('aae', 'altMAPE')
            trivialErrorMetric = 'avg_err' if isCategory else 'altMAPE'
            oneGramErrorMetric = 'avg_err' if isCategory else 'altMAPE'
            movingAverageBaselineName = 'moving_mode' if isCategory else 'moving_mean'

            # Multi-step metrics
            for metricName in metricNames:
              metricSpec, metricLabel = \
                _generateMetricSpecString(field=predictedFieldName,
                         inferenceElement=InferenceElement.multiStepBestPredictions,
                         metric='multiStep',
                         params={'errorMetric': metricName,
                                       'window':metricWindow,
                                       'steps': predictionSteps},
                         returnLabel=True)
              metricSpecStrings.append(metricSpec)

            # If the custom error metric was specified, add that
            if options["customErrorMetric"] is not None :
              metricParams = dict(options["customErrorMetric"])
              metricParams['errorMetric'] = 'custom_error_metric'
              metricParams['steps'] = predictionSteps
              # If errorWindow is not specified, make it equal to the default window
              if not "errorWindow" in metricParams:
                metricParams["errorWindow"] = metricWindow
              metricSpec, metricLabel =_generateMetricSpecString(field=predictedFieldName,
                           inferenceElement=InferenceElement.multiStepPredictions,
                           metric="multiStep",
                           params=metricParams,
                           returnLabel=True)
              metricSpecStrings.append(metricSpec)

            # If this is the first specified step size, optimize for it. Be sure to
            #  escape special characters since this is a regular expression
            optimizeMetricSpec = metricSpec
            metricLabel = metricLabel.replace('[', '\\[')
            metricLabel = metricLabel.replace(']', '\\]')
            optimizeMetricLabel = metricLabel

            if options["customErrorMetric"] is not None :
              optimizeMetricLabel = ".*custom_error_metric.*"

            # Add in the trivial metrics
            if options["runBaselines"] \
                  and inferenceType != InferenceType.NontemporalClassification:
              for steps in predictionSteps:
                metricSpecStrings.append(
                  _generateMetricSpecString(field=predictedFieldName,
                                            inferenceElement=InferenceElement.prediction,
                                            metric="trivial",
                                            params={'window':metricWindow,
                                                          "errorMetric":trivialErrorMetric,
                                                          'steps': steps})
                  )

                ##Add in the One-Gram baseline error metric
                #metricSpecStrings.append(
                #  _generateMetricSpecString(field=predictedFieldName,
                #                            inferenceElement=InferenceElement.encodings,
                #                            metric="two_gram",
                #                            params={'window':metricWindow,
                #                                          "errorMetric":oneGramErrorMetric,
                #                                          'predictionField':predictedFieldName,
                #                                          'steps': steps})
                #  )
                #
                #Include the baseline moving mean/mode metric
                if isCategory:
                  metricSpecStrings.append(
                    _generateMetricSpecString(field=predictedFieldName,
                                              inferenceElement=InferenceElement.prediction,
                                              metric=movingAverageBaselineName,
                                              params={'window':metricWindow
                                                            ,"errorMetric":"avg_err",
                                                            "mode_window":200,
                                                            "steps": steps})
                    )
                else :
                  metricSpecStrings.append(
                    _generateMetricSpecString(field=predictedFieldName,
                                              inferenceElement=InferenceElement.prediction,
                                              metric=movingAverageBaselineName,
                                              params={'window':metricWindow
                                                            ,"errorMetric":"altMAPE",
                                                            "mean_window":200,
                                                            "steps": steps})
                    )




          # -----------------------------------------------------------------------
          # Metrics for classification
          elif inferenceType in (InferenceType.TemporalClassification):

            metricName = 'avg_err'
            trivialErrorMetric = 'avg_err'
            oneGramErrorMetric = 'avg_err'
            movingAverageBaselineName = 'moving_mode'

            optimizeMetricSpec, optimizeMetricLabel = \
              _generateMetricSpecString(inferenceElement=InferenceElement.classification,
                                       metric=metricName,
                                       params={'window':metricWindow},
                                       returnLabel=True)

            metricSpecStrings.append(optimizeMetricSpec)

            if options["runBaselines"]:
              # If temporal, generate the trivial predictor metric
              if inferenceType == InferenceType.TemporalClassification:
                metricSpecStrings.append(
                  _generateMetricSpecString(inferenceElement=InferenceElement.classification,
                                            metric="trivial",
                                            params={'window':metricWindow,
                                                          "errorMetric":trivialErrorMetric})
                  )
                metricSpecStrings.append(
                  _generateMetricSpecString(inferenceElement=InferenceElement.classification,
                                            metric="two_gram",
                                            params={'window':metricWindow,
                                                          "errorMetric":oneGramErrorMetric})
                  )
                metricSpecStrings.append(
                  _generateMetricSpecString(inferenceElement=InferenceElement.classification,
                                            metric=movingAverageBaselineName,
                                            params={'window':metricWindow
                                                          ,"errorMetric":"avg_err",
                                                          "mode_window":200})
                  )


            # Custom Error Metric
            if not options["customErrorMetric"] == None :
              #If errorWindow is not specified, make it equal to the default window
              if not "errorWindow" in options["customErrorMetric"]:
                options["customErrorMetric"]["errorWindow"] = metricWindow
              optimizeMetricSpec = _generateMetricSpecString(
                                        inferenceElement=InferenceElement.classification,
                                        metric="custom",
                                        params=options["customErrorMetric"])
              optimizeMetricLabel = ".*custom_error_metric.*"

              metricSpecStrings.append(optimizeMetricSpec)


          # -----------------------------------------------------------------------
          # If plug in the predictionSteps variable for any dynamically generated
          #  prediction steps
          if options['dynamicPredictionSteps']:
            for i in range(len(metricSpecStrings)):
              metricSpecStrings[i] = metricSpecStrings[i].replace(
                  "'$REPLACE_ME'", "predictionSteps")
            optimizeMetricLabel = optimizeMetricLabel.replace(
                "'$REPLACE_ME'", ".*")
          return metricSpecStrings, optimizeMetricLabel
      - |-
        def create_perf_attrib_stats(perf_attrib, risk_exposures):
            """
            Takes perf attribution data over a period of time and computes annualized
            multifactor alpha, multifactor sharpe, risk exposures.
            """
            summary = OrderedDict()
            total_returns = perf_attrib['total_returns']
            specific_returns = perf_attrib['specific_returns']
            common_returns = perf_attrib['common_returns']

            summary['Annualized Specific Return'] =\
                ep.annual_return(specific_returns)
            summary['Annualized Common Return'] =\
                ep.annual_return(common_returns)
            summary['Annualized Total Return'] =\
                ep.annual_return(total_returns)

            summary['Specific Sharpe Ratio'] =\
                ep.sharpe_ratio(specific_returns)

            summary['Cumulative Specific Return'] =\
                ep.cum_returns_final(specific_returns)
            summary['Cumulative Common Return'] =\
                ep.cum_returns_final(common_returns)
            summary['Total Returns'] =\
                ep.cum_returns_final(total_returns)

            summary = pd.Series(summary, name='')

            annualized_returns_by_factor = [ep.annual_return(perf_attrib[c])
                                            for c in risk_exposures.columns]
            cumulative_returns_by_factor = [ep.cum_returns_final(perf_attrib[c])
                                            for c in risk_exposures.columns]

            risk_exposure_summary = pd.DataFrame(
                data=OrderedDict([
                    (
                        'Average Risk Factor Exposure',
                        risk_exposures.mean(axis='rows')
                    ),
                    ('Annualized Return', annualized_returns_by_factor),
                    ('Cumulative Return', cumulative_returns_by_factor),
                ]),
                index=risk_exposures.columns,
            )

            return summary, risk_exposure_summary
  - source_sentence: _generateEncoderChoicesV1
    sentences:
      - |-
        def common_arg_parser():
            """
            Create an argparse.ArgumentParser for run_mujoco.py.
            """
            parser = arg_parser()
            parser.add_argument('--env', help='environment ID', type=str, default='Reacher-v2')
            parser.add_argument('--env_type', help='type of environment, used when the environment type cannot be automatically determined', type=str)
            parser.add_argument('--seed', help='RNG seed', type=int, default=None)
            parser.add_argument('--alg', help='Algorithm', type=str, default='ppo2')
            parser.add_argument('--num_timesteps', type=float, default=1e6),
            parser.add_argument('--network', help='network type (mlp, cnn, lstm, cnn_lstm, conv_only)', default=None)
            parser.add_argument('--gamestate', help='game state to load (so far only used in retro games)', default=None)
            parser.add_argument('--num_env', help='Number of environment copies being run in parallel. When not specified, set to number of cpus for Atari, and to 1 for Mujoco', default=None, type=int)
            parser.add_argument('--reward_scale', help='Reward scale factor. Default: 1.0', default=1.0, type=float)
            parser.add_argument('--save_path', help='Path to save trained model to', default=None, type=str)
            parser.add_argument('--save_video_interval', help='Save video every x steps (0 = disabled)', default=0, type=int)
            parser.add_argument('--save_video_length', help='Length of recorded video. Default: 200', default=200, type=int)
            parser.add_argument('--play', default=False, action='store_true')
            return parser
      - |-
        def check_intraday(estimate, returns, positions, transactions):
            """
            Logic for checking if a strategy is intraday and processing it.

            Parameters
            ----------
            estimate: boolean or str, optional
                Approximate returns for intraday strategies.
                See description in tears.create_full_tear_sheet.
            returns : pd.Series
                Daily returns of the strategy, noncumulative.
                 - See full explanation in create_full_tear_sheet.
            positions : pd.DataFrame
                Daily net position values.
                 - See full explanation in create_full_tear_sheet.
            transactions : pd.DataFrame
                Prices and amounts of executed trades. One row per trade.
                 - See full explanation in create_full_tear_sheet.

            Returns
            -------
            pd.DataFrame
                Daily net position values, adjusted for intraday movement.
            """

            if estimate == 'infer':
                if positions is not None and transactions is not None:
                    if detect_intraday(positions, transactions):
                        warnings.warn('Detected intraday strategy; inferring positi' +
                                      'ons from transactions. Set estimate_intraday' +
                                      '=False to disable.')
                        return estimate_intraday(returns, positions, transactions)
                    else:
                        return positions
                else:
                    return positions

            elif estimate:
                if positions is not None and transactions is not None:
                    return estimate_intraday(returns, positions, transactions)
                else:
                    raise ValueError('Positions and txns needed to estimate intraday')
            else:
                return positions
      - |-
        def _generateEncoderChoicesV1(fieldInfo):
          """ Return a list of possible encoder parameter combinations for the given
          field and the default aggregation function to use. Each parameter combination
          is a dict defining the parameters for the encoder. Here is an example
          return value for the encoderChoicesList:

           [
             None,
             {'fieldname':'timestamp',
              'name': 'timestamp_timeOfDay',
              'type':'DateEncoder'
              'dayOfWeek': (7,1)
              },
             {'fieldname':'timestamp',
              'name': 'timestamp_timeOfDay',
              'type':'DateEncoder'
              'dayOfWeek': (7,3)
              },
          ],

          Parameters:
          --------------------------------------------------
          fieldInfo:      item from the 'includedFields' section of the
                            description JSON object

          retval:  (encoderChoicesList, aggFunction)
                     encoderChoicesList: a list of encoder choice lists for this field.
                       Most fields will generate just 1 encoder choice list.
                       DateTime fields can generate 2 or more encoder choice lists,
                         one for dayOfWeek, one for timeOfDay, etc.
                     aggFunction: name of aggregation function to use for this
                                   field type

          """

          width = 7
          fieldName = fieldInfo['fieldName']
          fieldType = fieldInfo['fieldType']
          encoderChoicesList = []

          # Scalar?
          if fieldType in ['float', 'int']:
            aggFunction = 'mean'
            encoders = [None]
            for n in (13, 50, 150, 500):
              encoder = dict(type='ScalarSpaceEncoder', name=fieldName, fieldname=fieldName,
                             n=n, w=width, clipInput=True,space="absolute")
              if 'minValue' in fieldInfo:
                encoder['minval'] = fieldInfo['minValue']
              if 'maxValue' in fieldInfo:
                encoder['maxval'] = fieldInfo['maxValue']
              encoders.append(encoder)
            encoderChoicesList.append(encoders)

          # String?
          elif fieldType == 'string':
            aggFunction = 'first'
            encoders = [None]
            encoder = dict(type='SDRCategoryEncoder', name=fieldName,
                           fieldname=fieldName, n=100, w=width)
            encoders.append(encoder)
            encoderChoicesList.append(encoders)


          # Datetime?
          elif fieldType == 'datetime':
            aggFunction = 'first'

            # First, the time of day representation
            encoders = [None]
            for radius in (1, 8):
              encoder = dict(type='DateEncoder', name='%s_timeOfDay' % (fieldName),
                             fieldname=fieldName, timeOfDay=(width, radius))
              encoders.append(encoder)
            encoderChoicesList.append(encoders)

            # Now, the day of week representation
            encoders = [None]
            for radius in (1, 3):
              encoder = dict(type='DateEncoder', name='%s_dayOfWeek' % (fieldName),
                             fieldname=fieldName, dayOfWeek=(width, radius))
              encoders.append(encoder)
            encoderChoicesList.append(encoders)

          else:
            raise RuntimeError("Unsupported field type '%s'" % (fieldType))


          # Return results
          return (encoderChoicesList, aggFunction)
  - source_sentence: leaky_relu6
    sentences:
      - |-
        def list_string_to_dict(string):
            """Inputs ``['a', 'b', 'c']``, returns ``{'a': 0, 'b': 1, 'c': 2}``."""
            dictionary = {}
            for idx, c in enumerate(string):
                dictionary.update({c: idx})
            return dictionary
      - >-
        def affine_transform(x, transform_matrix, channel_index=2,
        fill_mode='nearest', cval=0., order=1):
            """Return transformed images by given an affine matrix in Scipy format (x is height).

            Parameters
            ----------
            x : numpy.array
                An image with dimension of [row, col, channel] (default).
            transform_matrix : numpy.array
                Transform matrix (offset center), can be generated by ``transform_matrix_offset_center``
            channel_index : int
                Index of channel, default 2.
            fill_mode : str
                Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__
            cval : float
                Value used for points outside the boundaries of the input if mode='constant'. Default is 0.0
            order : int
                The order of interpolation. The order has to be in the range 0-5:
                    - 0 Nearest-neighbor
                    - 1 Bi-linear (default)
                    - 2 Bi-quadratic
                    - 3 Bi-cubic
                    - 4 Bi-quartic
                    - 5 Bi-quintic
                    - `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__

            Returns
            -------
            numpy.array
                A processed image.

            Examples
            --------
            >>> M_shear = tl.prepro.affine_shear_matrix(intensity=0.2, is_random=False)
            >>> M_zoom = tl.prepro.affine_zoom_matrix(zoom_range=0.8)
            >>> M_combined = M_shear.dot(M_zoom)
            >>> transform_matrix = tl.prepro.transform_matrix_offset_center(M_combined, h, w)
            >>> result = tl.prepro.affine_transform(image, transform_matrix)

            """
            # transform_matrix = transform_matrix_offset_center()
            # asdihasid
            # asd

            x = np.rollaxis(x, channel_index, 0)
            final_affine_matrix = transform_matrix[:2, :2]
            final_offset = transform_matrix[:2, 2]
            channel_images = [
                ndi.interpolation.
                affine_transform(x_channel, final_affine_matrix, final_offset, order=order, mode=fill_mode, cval=cval)
                for x_channel in x
            ]
            x = np.stack(channel_images, axis=0)
            x = np.rollaxis(x, 0, channel_index + 1)
            return x
      - |-
        def leaky_relu6(x, alpha=0.2, name="leaky_relu6"):
            """:func:`leaky_relu6` can be used through its shortcut: :func:`tl.act.lrelu6`.

            This activation function is a modified version :func:`leaky_relu` introduced by the following paper:
            `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__

            This activation function also follows the behaviour of the activation function :func:`tf.nn.relu6` introduced by the following paper:
            `Convolutional Deep Belief Networks on CIFAR-10 [A. Krizhevsky, 2010] <http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf>`__

            The function return the following results:
              - When x < 0: ``f(x) = alpha_low * x``.
              - When x in [0, 6]: ``f(x) = x``.
              - When x > 6: ``f(x) = 6``.

            Parameters
            ----------
            x : Tensor
                Support input type ``float``, ``double``, ``int32``, ``int64``, ``uint8``, ``int16``, or ``int8``.
            alpha : float
                Slope.
            name : str
                The function name (optional).

            Examples
            --------
            >>> import tensorlayer as tl
            >>> net = tl.layers.DenseLayer(net, 100, act=lambda x : tl.act.leaky_relu6(x, 0.2), name='dense')

            Returns
            -------
            Tensor
                A ``Tensor`` in the same type as ``x``.

            References
            ----------
            - `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__
            - `Convolutional Deep Belief Networks on CIFAR-10 [A. Krizhevsky, 2010] <http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf>`__
            """
            if not isinstance(alpha, tf.Tensor) and not (0 < alpha <= 1):
                raise ValueError("`alpha` value must be in [0, 1]`")

            with tf.name_scope(name, "leaky_relu6") as name_scope:
                x = tf.convert_to_tensor(x, name="features")
                return tf.minimum(tf.maximum(x, alpha * x), 6, name=name_scope)
  - source_sentence: LineString.contains
    sentences:
      - >-
        def build_act_with_param_noise(make_obs_ph, q_func, num_actions,
        scope="deepq", reuse=None, param_noise_filter_func=None):
            """Creates the act function with support for parameter space noise exploration (https://arxiv.org/abs/1706.01905):

            Parameters
            ----------
            make_obs_ph: str -> tf.placeholder or TfInput
                a function that take a name and creates a placeholder of input with that name
            q_func: (tf.Variable, int, str, bool) -> tf.Variable
                the model that takes the following inputs:
                    observation_in: object
                        the output of observation placeholder
                    num_actions: int
                        number of actions
                    scope: str
                    reuse: bool
                        should be passed to outer variable scope
                and returns a tensor of shape (batch_size, num_actions) with values of every action.
            num_actions: int
                number of actions.
            scope: str or VariableScope
                optional scope for variable_scope.
            reuse: bool or None
                whether or not the variables should be reused. To be able to reuse the scope must be given.
            param_noise_filter_func: tf.Variable -> bool
                function that decides whether or not a variable should be perturbed. Only applicable
                if param_noise is True. If set to None, default_param_noise_filter is used by default.

            Returns
            -------
            act: (tf.Variable, bool, float, bool, float, bool) -> tf.Variable
                function to select and action given observation.
        `       See the top of the file for details.
            """
            if param_noise_filter_func is None:
                param_noise_filter_func = default_param_noise_filter

            with tf.variable_scope(scope, reuse=reuse):
                observations_ph = make_obs_ph("observation")
                stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic")
                update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps")
                update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold")
                update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale")
                reset_ph = tf.placeholder(tf.bool, (), name="reset")

                eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0))
                param_noise_scale = tf.get_variable("param_noise_scale", (), initializer=tf.constant_initializer(0.01), trainable=False)
                param_noise_threshold = tf.get_variable("param_noise_threshold", (), initializer=tf.constant_initializer(0.05), trainable=False)

                # Unmodified Q.
                q_values = q_func(observations_ph.get(), num_actions, scope="q_func")

                # Perturbable Q used for the actual rollout.
                q_values_perturbed = q_func(observations_ph.get(), num_actions, scope="perturbed_q_func")
                # We have to wrap this code into a function due to the way tf.cond() works. See
                # https://stackoverflow.com/questions/37063952/confused-by-the-behavior-of-tf-cond for
                # a more detailed discussion.
                def perturb_vars(original_scope, perturbed_scope):
                    all_vars = scope_vars(absolute_scope_name(original_scope))
                    all_perturbed_vars = scope_vars(absolute_scope_name(perturbed_scope))
                    assert len(all_vars) == len(all_perturbed_vars)
                    perturb_ops = []
                    for var, perturbed_var in zip(all_vars, all_perturbed_vars):
                        if param_noise_filter_func(perturbed_var):
                            # Perturb this variable.
                            op = tf.assign(perturbed_var, var + tf.random_normal(shape=tf.shape(var), mean=0., stddev=param_noise_scale))
                        else:
                            # Do not perturb, just assign.
                            op = tf.assign(perturbed_var, var)
                        perturb_ops.append(op)
                    assert len(perturb_ops) == len(all_vars)
                    return tf.group(*perturb_ops)

                # Set up functionality to re-compute `param_noise_scale`. This perturbs yet another copy
                # of the network and measures the effect of that perturbation in action space. If the perturbation
                # is too big, reduce scale of perturbation, otherwise increase.
                q_values_adaptive = q_func(observations_ph.get(), num_actions, scope="adaptive_q_func")
                perturb_for_adaption = perturb_vars(original_scope="q_func", perturbed_scope="adaptive_q_func")
                kl = tf.reduce_sum(tf.nn.softmax(q_values) * (tf.log(tf.nn.softmax(q_values)) - tf.log(tf.nn.softmax(q_values_adaptive))), axis=-1)
                mean_kl = tf.reduce_mean(kl)
                def update_scale():
                    with tf.control_dependencies([perturb_for_adaption]):
                        update_scale_expr = tf.cond(mean_kl < param_noise_threshold,
                            lambda: param_noise_scale.assign(param_noise_scale * 1.01),
                            lambda: param_noise_scale.assign(param_noise_scale / 1.01),
                        )
                    return update_scale_expr

                # Functionality to update the threshold for parameter space noise.
                update_param_noise_threshold_expr = param_noise_threshold.assign(tf.cond(update_param_noise_threshold_ph >= 0,
                    lambda: update_param_noise_threshold_ph, lambda: param_noise_threshold))

                # Put everything together.
                deterministic_actions = tf.argmax(q_values_perturbed, axis=1)
                batch_size = tf.shape(observations_ph.get())[0]
                random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64)
                chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
                stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)

                output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
                update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
                updates = [
                    update_eps_expr,
                    tf.cond(reset_ph, lambda: perturb_vars(original_scope="q_func", perturbed_scope="perturbed_q_func"), lambda: tf.group(*[])),
                    tf.cond(update_param_noise_scale_ph, lambda: update_scale(), lambda: tf.Variable(0., trainable=False)),
                    update_param_noise_threshold_expr,
                ]
                _act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph, reset_ph, update_param_noise_threshold_ph, update_param_noise_scale_ph],
                                 outputs=output_actions,
                                 givens={update_eps_ph: -1.0, stochastic_ph: True, reset_ph: False, update_param_noise_threshold_ph: False, update_param_noise_scale_ph: False},
                                 updates=updates)
                def act(ob, reset=False, update_param_noise_threshold=False, update_param_noise_scale=False, stochastic=True, update_eps=-1):
                    return _act(ob, stochastic, update_eps, reset, update_param_noise_threshold, update_param_noise_scale)
                return act
      - |-
        def contains(self, other, max_distance=1e-4):
                """
                Estimate whether the bounding box contains a point.

                Parameters
                ----------
                other : tuple of number or imgaug.augmentables.kps.Keypoint
                    Point to check for.

                max_distance : float
                    Maximum allowed euclidean distance between the point and the
                    closest point on the line. If the threshold is exceeded, the point
                    is not considered to be contained in the line.

                Returns
                -------
                bool
                    True if the point is contained in the line string, False otherwise.
                    It is contained if its distance to the line or any of its points
                    is below a threshold.

                """
                return self.compute_distance(other, default=np.inf) < max_distance
      - |-
        def is_fully_within_image(self, image):
                """
                Estimate whether the bounding box is fully inside the image area.

                Parameters
                ----------
                image : (H,W,...) ndarray or tuple of int
                    Image dimensions to use.
                    If an ndarray, its shape will be used.
                    If a tuple, it is assumed to represent the image shape
                    and must contain at least two integers.

                Returns
                -------
                bool
                    True if the bounding box is fully inside the image area. False otherwise.

                """
                shape = normalize_shape(image)
                height, width = shape[0:2]
                return self.x1 >= 0 and self.x2 < width and self.y1 >= 0 and self.y2 < height
  - source_sentence: Keypoint.copy
    sentences:
      - >-
        def build_words_dataset(words=None, vocabulary_size=50000,
        printable=True, unk_key='UNK'):
            """Build the words dictionary and replace rare words with 'UNK' token.
            The most common word has the smallest integer id.

            Parameters
            ----------
            words : list of str or byte
                The context in list format. You may need to do preprocessing on the words, such as lower case, remove marks etc.
            vocabulary_size : int
                The maximum vocabulary size, limiting the vocabulary size. Then the script replaces rare words with 'UNK' token.
            printable : boolean
                Whether to print the read vocabulary size of the given words.
            unk_key : str
                Represent the unknown words.

            Returns
            --------
            data : list of int
                The context in a list of ID.
            count : list of tuple and list
                Pair words and IDs.
                    - count[0] is a list : the number of rare words
                    - count[1:] are tuples : the number of occurrence of each word
                    - e.g. [['UNK', 418391], (b'the', 1061396), (b'of', 593677), (b'and', 416629), (b'one', 411764)]
            dictionary : dictionary
                It is `word_to_id` that maps word to ID.
            reverse_dictionary : a dictionary
                It is `id_to_word` that maps ID to word.

            Examples
            --------
            >>> words = tl.files.load_matt_mahoney_text8_dataset()
            >>> vocabulary_size = 50000
            >>> data, count, dictionary, reverse_dictionary = tl.nlp.build_words_dataset(words, vocabulary_size)

            References
            -----------------
            - `tensorflow/examples/tutorials/word2vec/word2vec_basic.py <https://github.com/tensorflow/tensorflow/blob/r0.7/tensorflow/examples/tutorials/word2vec/word2vec_basic.py>`__

            """
            if words is None:
                raise Exception("words : list of str or byte")

            count = [[unk_key, -1]]
            count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
            dictionary = dict()
            for word, _ in count:
                dictionary[word] = len(dictionary)
            data = list()
            unk_count = 0
            for word in words:
                if word in dictionary:
                    index = dictionary[word]
                else:
                    index = 0  # dictionary['UNK']
                    unk_count += 1
                data.append(index)
            count[0][1] = unk_count
            reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
            if printable:
                tl.logging.info('Real vocabulary size    %d' % len(collections.Counter(words).keys()))
                tl.logging.info('Limited vocabulary size {}'.format(vocabulary_size))
            if len(collections.Counter(words).keys()) < vocabulary_size:
                raise Exception(
                    "len(collections.Counter(words).keys()) >= vocabulary_size , the limited vocabulary_size must be less than or equal to the read vocabulary_size"
                )
            return data, count, dictionary, reverse_dictionary
      - >-
        def Snowflakes(density=(0.005, 0.075), density_uniformity=(0.3, 0.9),
        flake_size=(0.2, 0.7),
                       flake_size_uniformity=(0.4, 0.8), angle=(-30, 30), speed=(0.007, 0.03),
                       name=None, deterministic=False, random_state=None):
            """
            Augmenter to add falling snowflakes to images.

            This is a wrapper around ``SnowflakesLayer``. It executes 1 to 3 layers per image.

            dtype support::

                * ``uint8``: yes; tested
                * ``uint16``: no (1)
                * ``uint32``: no (1)
                * ``uint64``: no (1)
                * ``int8``: no (1)
                * ``int16``: no (1)
                * ``int32``: no (1)
                * ``int64``: no (1)
                * ``float16``: no (1)
                * ``float32``: no (1)
                * ``float64``: no (1)
                * ``float128``: no (1)
                * ``bool``: no (1)

                - (1) Parameters of this augmenter are optimized for the value range of uint8.
                      While other dtypes may be accepted, they will lead to images augmented in
                      ways inappropriate for the respective dtype.

            Parameters
            ----------
            density : number or tuple of number or list of number or imgaug.parameters.StochasticParameter
                Density of the snowflake layer, as a probability of each pixel in low resolution space to be a snowflake.
                Valid value range is ``(0.0, 1.0)``. Recommended to be around ``(0.01, 0.075)``.

                    * If a number, then that value will be used for all images.
                    * If a tuple ``(a, b)``, then a value from the continuous range ``[a, b]`` will be used.
                    * If a list, then a random value will be sampled from that list per image.
                    * If a StochasticParameter, then a value will be sampled per image from that parameter.

            density_uniformity : number or tuple of number or list of number or imgaug.parameters.StochasticParameter
                Size uniformity of the snowflakes. Higher values denote more similarly sized snowflakes.
                Valid value range is ``(0.0, 1.0)``. Recommended to be around ``0.5``.

                    * If a number, then that value will be used for all images.
                    * If a tuple ``(a, b)``, then a value from the continuous range ``[a, b]`` will be used.
                    * If a list, then a random value will be sampled from that list per image.
                    * If a StochasticParameter, then a value will be sampled per image from that parameter.

            flake_size : number or tuple of number or list of number or imgaug.parameters.StochasticParameter
                Size of the snowflakes. This parameter controls the resolution at which snowflakes are sampled.
                Higher values mean that the resolution is closer to the input image's resolution and hence each sampled
                snowflake will be smaller (because of the smaller pixel size).

                Valid value range is ``[0.0, 1.0)``. Recommended values:

                    * On ``96x128`` a value of ``(0.1, 0.4)`` worked well.
                    * On ``192x256`` a value of ``(0.2, 0.7)`` worked well.
                    * On ``960x1280`` a value of ``(0.7, 0.95)`` worked well.

                Allowed datatypes:

                    * If a number, then that value will be used for all images.
                    * If a tuple ``(a, b)``, then a value from the continuous range ``[a, b]`` will be used.
                    * If a list, then a random value will be sampled from that list per image.
                    * If a StochasticParameter, then a value will be sampled per image from that parameter.

            flake_size_uniformity : number or tuple of number or list of number or imgaug.parameters.StochasticParameter
                Controls the size uniformity of the snowflakes. Higher values mean that the snowflakes are more similarly
                sized. Valid value range is ``(0.0, 1.0)``. Recommended to be around ``0.5``.

                    * If a number, then that value will be used for all images.
                    * If a tuple ``(a, b)``, then a value from the continuous range ``[a, b]`` will be used.
                    * If a list, then a random value will be sampled from that list per image.
                    * If a StochasticParameter, then a value will be sampled per image from that parameter.

            angle : number or tuple of number or list of number or imgaug.parameters.StochasticParameter
                Angle in degrees of motion blur applied to the snowflakes, where ``0.0`` is motion blur that points straight
                upwards. Recommended to be around ``(-30, 30)``.
                See also :func:`imgaug.augmenters.blur.MotionBlur.__init__`.

                    * If a number, then that value will be used for all images.
                    * If a tuple ``(a, b)``, then a value from the continuous range ``[a, b]`` will be used.
                    * If a list, then a random value will be sampled from that list per image.
                    * If a StochasticParameter, then a value will be sampled per image from that parameter.

            speed : number or tuple of number or list of number or imgaug.parameters.StochasticParameter
                Perceived falling speed of the snowflakes. This parameter controls the motion blur's kernel size.
                It follows roughly the form ``kernel_size = image_size * speed``. Hence,
                Values around ``1.0`` denote that the motion blur should "stretch" each snowflake over the whole image.

                Valid value range is ``(0.0, 1.0)``. Recommended values:

                    * On ``96x128`` a value of ``(0.01, 0.05)`` worked well.
                    * On ``192x256`` a value of ``(0.007, 0.03)`` worked well.
                    * On ``960x1280`` a value of ``(0.001, 0.03)`` worked well.


                Allowed datatypes:

                    * If a number, then that value will be used for all images.
                    * If a tuple ``(a, b)``, then a value from the continuous range ``[a, b]`` will be used.
                    * If a list, then a random value will be sampled from that list per image.
                    * If a StochasticParameter, then a value will be sampled per image from that parameter.

            name : None or str, optional
                See :func:`imgaug.augmenters.meta.Augmenter.__init__`.

            deterministic : bool, optional
                See :func:`imgaug.augmenters.meta.Augmenter.__init__`.

            random_state : None or int or numpy.random.RandomState, optional
                See :func:`imgaug.augmenters.meta.Augmenter.__init__`.

            Examples
            --------
            >>> aug = iaa.Snowflakes(flake_size=(0.1, 0.4), speed=(0.01, 0.05))

            Adds snowflakes to small images (around ``96x128``).

            >>> aug = iaa.Snowflakes(flake_size=(0.2, 0.7), speed=(0.007, 0.03))

            Adds snowflakes to medium-sized images (around ``192x256``).

            >>> aug = iaa.Snowflakes(flake_size=(0.7, 0.95), speed=(0.001, 0.03))

            Adds snowflakes to large images (around ``960x1280``).

            """
            if name is None:
                name = "Unnamed%s" % (ia.caller_name(),)

            layer = SnowflakesLayer(
                density=density, density_uniformity=density_uniformity,
                flake_size=flake_size, flake_size_uniformity=flake_size_uniformity,
                angle=angle, speed=speed,
                blur_sigma_fraction=(0.0001, 0.001)
            )

            return meta.SomeOf(
                (1, 3), children=[layer.deepcopy() for _ in range(3)],
                random_order=False, name=name, deterministic=deterministic, random_state=random_state
            )
      - |-
        def copy(self, x=None, y=None):
                """
                Create a shallow copy of the Keypoint object.

                Parameters
                ----------
                x : None or number, optional
                    Coordinate of the keypoint on the x axis.
                    If ``None``, the instance's value will be copied.

                y : None or number, optional
                    Coordinate of the keypoint on the y axis.
                    If ``None``, the instance's value will be copied.

                Returns
                -------
                imgaug.Keypoint
                    Shallow copy.

                """
                return self.deepcopy(x=x, y=y)
model-index:
  - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.8806072274141987
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8810194487011652
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8780911558324747
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8798257355327418
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8794084495321427
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8810194487011652
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.8806072253861965
            name: Pearson Dot
          - type: spearman_dot
            value: 0.8810194487011652
            name: Spearman Dot
          - type: pearson_max
            value: 0.8806072274141987
            name: Pearson Max
          - type: spearman_max
            value: 0.8810194487011652
            name: Spearman Max

SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2 on the code-search-net/code_search_net dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("BoghdadyJR/al-MiniLM-L6-v2")
# Run inference
sentences = [
    'Keypoint.copy',
    'def copy(self, x=None, y=None):\n        """\n        Create a shallow copy of the Keypoint object.\n\n        Parameters\n        ----------\n        x : None or number, optional\n            Coordinate of the keypoint on the x axis.\n            If ``None``, the instance\'s value will be copied.\n\n        y : None or number, optional\n            Coordinate of the keypoint on the y axis.\n            If ``None``, the instance\'s value will be copied.\n\n        Returns\n        -------\n        imgaug.Keypoint\n            Shallow copy.\n\n        """\n        return self.deepcopy(x=x, y=y)',
    'def build_words_dataset(words=None, vocabulary_size=50000, printable=True, unk_key=\'UNK\'):\n    """Build the words dictionary and replace rare words with \'UNK\' token.\n    The most common word has the smallest integer id.\n\n    Parameters\n    ----------\n    words : list of str or byte\n        The context in list format. You may need to do preprocessing on the words, such as lower case, remove marks etc.\n    vocabulary_size : int\n        The maximum vocabulary size, limiting the vocabulary size. Then the script replaces rare words with \'UNK\' token.\n    printable : boolean\n        Whether to print the read vocabulary size of the given words.\n    unk_key : str\n        Represent the unknown words.\n\n    Returns\n    --------\n    data : list of int\n        The context in a list of ID.\n    count : list of tuple and list\n        Pair words and IDs.\n            - count[0] is a list : the number of rare words\n            - count[1:] are tuples : the number of occurrence of each word\n            - e.g. [[\'UNK\', 418391], (b\'the\', 1061396), (b\'of\', 593677), (b\'and\', 416629), (b\'one\', 411764)]\n    dictionary : dictionary\n        It is `word_to_id` that maps word to ID.\n    reverse_dictionary : a dictionary\n        It is `id_to_word` that maps ID to word.\n\n    Examples\n    --------\n    >>> words = tl.files.load_matt_mahoney_text8_dataset()\n    >>> vocabulary_size = 50000\n    >>> data, count, dictionary, reverse_dictionary = tl.nlp.build_words_dataset(words, vocabulary_size)\n\n    References\n    -----------------\n    - `tensorflow/examples/tutorials/word2vec/word2vec_basic.py <https://github.com/tensorflow/tensorflow/blob/r0.7/tensorflow/examples/tutorials/word2vec/word2vec_basic.py>`__\n\n    """\n    if words is None:\n        raise Exception("words : list of str or byte")\n\n    count = [[unk_key, -1]]\n    count.extend(collections.Counter(words).most_common(vocabulary_size - 1))\n    dictionary = dict()\n    for word, _ in count:\n        dictionary[word] = len(dictionary)\n    data = list()\n    unk_count = 0\n    for word in words:\n        if word in dictionary:\n            index = dictionary[word]\n        else:\n            index = 0  # dictionary[\'UNK\']\n            unk_count += 1\n        data.append(index)\n    count[0][1] = unk_count\n    reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))\n    if printable:\n        tl.logging.info(\'Real vocabulary size    %d\' % len(collections.Counter(words).keys()))\n        tl.logging.info(\'Limited vocabulary size {}\'.format(vocabulary_size))\n    if len(collections.Counter(words).keys()) < vocabulary_size:\n        raise Exception(\n            "len(collections.Counter(words).keys()) >= vocabulary_size , the limited vocabulary_size must be less than or equal to the read vocabulary_size"\n        )\n    return data, count, dictionary, reverse_dictionary',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.8806
spearman_cosine 0.881
pearson_manhattan 0.8781
spearman_manhattan 0.8798
pearson_euclidean 0.8794
spearman_euclidean 0.881
pearson_dot 0.8806
spearman_dot 0.881
pearson_max 0.8806
spearman_max 0.881

Training Details

Training Dataset

code-search-net/code_search_net

  • Dataset: code-search-net/code_search_net
  • Size: 20,000 training samples
  • Columns: func_name and whole_func_string
  • Approximate statistics based on the first 1000 samples:
    func_name whole_func_string
    type string string
    details
    • min: 3 tokens
    • mean: 8.18 tokens
    • max: 21 tokens
    • min: 38 tokens
    • mean: 192.0 tokens
    • max: 384 tokens
  • Samples:
    func_name whole_func_string
    ImageGraphCut.__msgc_step3_discontinuity_localization def __msgc_step3_discontinuity_localization(self):
    """
    Estimate discontinuity in basis of low resolution image segmentation.
    :return: discontinuity in low resolution
    """
    import scipy

    start = self._start_time
    seg = 1 - self.segmentation.astype(np.int8)
    self.stats["low level object voxels"] = np.sum(seg)
    self.stats["low level image voxels"] = np.prod(seg.shape)
    # in seg is now stored low resolution segmentation
    # back to normal parameters
    # step 2: discontinuity localization
    # self.segparams = sparams_hi
    seg_border = scipy.ndimage.filters.laplace(seg, mode="constant")
    logger.debug("seg_border: %s", scipy.stats.describe(seg_border, axis=None))
    # logger.debug(str(np.max(seg_border)))
    # logger.debug(str(np.min(seg_border)))
    seg_border[seg_border != 0] = 1
    logger.debug("seg_border: %s", scipy.stats.describe(seg_border, axis=None))
    # scipy.ndimage.morphology.distance_transform_edt
    boundary_dilatation_distance = self.segparams["boundary_dilatation_distance"]
    seg = scipy.ndimage.morphology.binary_dilation(
    seg_border,
    # seg,
    np.ones(
    [
    (boundary_dilatation_distance * 2) + 1,
    (boundary_dilatation_distance * 2) + 1,
    (boundary_dilatation_distance * 2) + 1,
    ]
    ),
    )
    if self.keep_temp_properties:
    self.temp_msgc_lowres_discontinuity = seg
    else:
    self.temp_msgc_lowres_discontinuity = None

    if self.debug_images:
    import sed3

    pd = sed3.sed3(seg_border) # ), contour=seg)
    pd.show()
    pd = sed3.sed3(seg) # ), contour=seg)
    pd.show()
    # segzoom = scipy.ndimage.interpolation.zoom(seg.astype('float'), zoom,
    # order=0).astype('int8')
    self.stats["t3"] = time.time() - start
    return seg
    ImageGraphCut.__multiscale_gc_lo2hi_run def __multiscale_gc_lo2hi_run(self): # , pyed):
    """
    Run Graph-Cut segmentation with refinement of low resolution multiscale graph.
    In first step is performed normal GC on low resolution data
    Second step construct finer grid on edges of segmentation from first
    step.
    There is no option for use without use_boundary_penalties
    """
    # from PyQt4.QtCore import pyqtRemoveInputHook
    # pyqtRemoveInputHook()
    self._msgc_lo2hi_resize_init()
    self.__msgc_step0_init()

    hard_constraints = self.__msgc_step12_low_resolution_segmentation()
    # ===== high resolution data processing
    seg = self.__msgc_step3_discontinuity_localization()

    self.stats["t3.1"] = (time.time() - self._start_time)
    graph = Graph(
    seg,
    voxelsize=self.voxelsize,
    nsplit=self.segparams["block_size"],
    edge_weight_table=self._msgc_npenalty_table,
    compute_low_nodes_index=True,
    )

    # graph.run() = graph.generate_base_grid() + graph.split_voxels()
    # graph.run()
    graph.generate_base_grid()
    self.stats["t3.2"] = (time.time() - self._start_time)
    graph.split_voxels()

    self.stats["t3.3"] = (time.time() - self._start_time)

    self.stats.update(graph.stats)
    self.stats["t4"] = (time.time() - self._start_time)
    mul_mask, mul_val = self.__msgc_tlinks_area_weight_from_low_segmentation(seg)
    area_weight = 1
    unariesalt = self.__create_tlinks(
    self.img,
    self.voxelsize,
    self.seeds,
    area_weight=area_weight,
    hard_constraints=hard_constraints,
    mul_mask=None,
    mul_val=None,
    )
    # N-links prepared
    self.stats["t5"] = (time.time() - self._start_time)
    un, ind = np.unique(graph.msinds, return_index=True)
    self.stats["t6"] = (time.time() - self._start_time)

    self.stats["t7"] = (time.time() - self._start_time)
    unariesalt2_lo2hi = np.hstack(
    [unariesalt[ind, 0, 0].reshape(-1, 1), unariesalt[ind, 0, 1].reshape(-1, 1)]
    )
    nlinks_lo2hi = np.hstack([graph.edges, graph.edges_weights.reshape(-1, 1)])
    if self.debug_images:
    import sed3

    ed = sed3.sed3(unariesalt[:, :, 0].reshape(self.img.shape))
    ed.show()
    import sed3

    ed = sed3.sed3(unariesalt[:, :, 1].reshape(self.img.shape))
    ed.show()
    # ed = sed3.sed3(seg)
    # ed.show()
    # import sed3
    # ed = sed3.sed3(graph.data)
    # ed.show()
    # import sed3
    # ed = sed3.sed3(graph.msinds)
    # ed.show()

    # nlinks, unariesalt2, msinds = self.__msgc_step45678_construct_graph(area_weight, hard_constraints, seg)
    # self.__msgc_step9_finish_perform_gc_and_reshape(nlinks, unariesalt2, msinds)
    self.__msgc_step9_finish_perform_gc_and_reshape(
    nlinks_lo2hi, unariesalt2_lo2hi, graph.msinds
    )
    self._msgc_lo2hi_resize_clean_finish()
    ImageGraphCut.__multiscale_gc_hi2lo_run def __multiscale_gc_hi2lo_run(self): # , pyed):
    """
    Run Graph-Cut segmentation with simplifiyng of high resolution multiscale graph.
    In first step is performed normal GC on low resolution data
    Second step construct finer grid on edges of segmentation from first
    step.
    There is no option for use without use_boundary_penalties
    """
    # from PyQt4.QtCore import pyqtRemoveInputHook
    # pyqtRemoveInputHook()

    self.__msgc_step0_init()
    hard_constraints = self.__msgc_step12_low_resolution_segmentation()
    # ===== high resolution data processing
    seg = self.__msgc_step3_discontinuity_localization()
    nlinks, unariesalt2, msinds = self.__msgc_step45678_hi2lo_construct_graph(
    hard_constraints, seg
    )
    self.__msgc_step9_finish_perform_gc_and_reshape(nlinks, unariesalt2, msinds)
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

code-search-net/code_search_net

  • Dataset: code-search-net/code_search_net
  • Size: 15,000 evaluation samples
  • Columns: func_name and whole_func_string
  • Approximate statistics based on the first 1000 samples:
    func_name whole_func_string
    type string string
    details
    • min: 3 tokens
    • mean: 9.23 tokens
    • max: 24 tokens
    • min: 50 tokens
    • mean: 276.31 tokens
    • max: 384 tokens
  • Samples:
    func_name whole_func_string
    learn def learn(env,
    network,
    seed=None,
    lr=5e-4,
    total_timesteps=100000,
    buffer_size=50000,
    exploration_fraction=0.1,
    exploration_final_eps=0.02,
    train_freq=1,
    batch_size=32,
    print_freq=100,
    checkpoint_freq=10000,
    checkpoint_path=None,
    learning_starts=1000,
    gamma=1.0,
    target_network_update_freq=500,
    prioritized_replay=False,
    prioritized_replay_alpha=0.6,
    prioritized_replay_beta0=0.4,
    prioritized_replay_beta_iters=None,
    prioritized_replay_eps=1e-6,
    param_noise=False,
    callback=None,
    load_path=None,
    **network_kwargs
    ):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
    environment to train on
    network: string or a function
    neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
    (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
    will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
    prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
    learning rate for adam optimizer
    total_timesteps: int
    number of env steps to optimizer for
    buffer_size: int
    size of the replay buffer
    exploration_fraction: float
    fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
    final value of random action probability
    train_freq: int
    update the model every train_freq steps.
    set to None to disable printing
    batch_size: int
    size of a batched sampled from replay buffer for training
    print_freq: int
    how often to print out training progress
    set to None to disable printing
    checkpoint_freq: int
    how often to save the model. This is so that the best version is restored
    at the end of the training. If you do not wish to restore the best version at
    the end of the training set this variable to None.
    learning_starts: int
    how many steps of the model to collect transitions for before learning starts
    gamma: float
    discount factor
    target_network_update_freq: int
    update the target network every target_network_update_freq steps.
    prioritized_replay: True
    if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
    alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
    initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
    number of iterations over which beta will be annealed from initial value
    to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
    epsilon to add to the TD errors when updating priorities.
    param_noise: bool
    whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
    function called at every steps with state of the algorithm.
    If callback returns true training stops.
    load_path: str
    path to load the model from. (default: None)
    **network_kwargs
    additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
    Wrapper over act function. Adds ability to save it and load it.
    See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space
    def make_obs_ph(name):
    return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = deepq.build_train(
    make_obs_ph=make_obs_ph,
    q_func=q_func,
    num_actions=env.action_space.n,
    optimizer=tf.train.AdamOptimizer(learning_rate=lr),
    gamma=gamma,
    grad_norm_clipping=10,
    param_noise=param_noise
    )

    act_params = {
    'make_obs_ph': make_obs_ph,
    'q_func': q_func,
    'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
    replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
    if prioritized_replay_beta_iters is None:
    prioritized_replay_beta_iters = total_timesteps
    beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
    initial_p=prioritized_replay_beta0,
    final_p=1.0)
    else:
    replay_buffer = ReplayBuffer(buffer_size)
    beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps),
    initial_p=1.0,
    final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
    td = checkpoint_path or td

    model_file = os.path.join(td, "model")
    model_saved = False

    if tf.train.latest_checkpoint(td) is not None:
    load_variables(model_file)
    logger.log('Loaded model from {}'.format(model_file))
    model_saved = True
    elif load_path is not None:
    load_variables(load_path)
    logger.log('Loaded model from {}'.format(load_path))


    for t in range(total_timesteps):
    if callback is not None:
    if callback(locals(), globals()):
    break
    # Take action and update exploration to the newest value
    kwargs = {}
    if not param_noise:
    update_eps = exploration.value(t)
    update_param_noise_threshold = 0.
    else:
    update_eps = 0.
    # Compute the threshold such that the KL divergence between perturbed and non-perturbed
    # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
    # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
    # for detailed explanation.
    update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
    kwargs['reset'] = reset
    kwargs['update_param_noise_threshold'] = update_param_noise_threshold
    kwargs['update_param_noise_scale'] = True
    action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
    env_action = action
    reset = False
    new_obs, rew, done, _ = env.step(env_action)
    # Store transition in the replay buffer.
    replay_buffer.add(obs, action, rew, new_obs, float(done))
    obs = new_obs

    episode_rewards[-1] += rew
    if done:
    obs = env.reset()
    episode_rewards.append(0.0)
    reset = True

    if t > learning_starts and t % train_freq == 0:
    # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
    if prioritized_replay:
    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
    else:
    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
    weights, batch_idxes = np.ones_like(rewards), None
    td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
    if prioritized_replay:
    new_priorities = np.abs(td_errors) + prioritized_replay_eps
    replay_buffer.update_priorities(batch_idxes, new_priorities)

    if t > learning_starts and t % target_network_update_freq == 0:
    # Update target network periodically.
    update_target()

    mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
    num_episodes = len(episode_rewards)
    if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
    logger.record_tabular("steps", t)
    logger.record_tabular("episodes", num_episodes)
    logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
    logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
    logger.dump_tabular()

    if (checkpoint_freq is not None and t > learning_starts and
    num_episodes > 100 and t % checkpoint_freq == 0):
    if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
    if print_freq is not None:
    logger.log("Saving model due to mean reward increase: {} -> {}".format(
    saved_mean_reward, mean_100ep_reward))
    save_variables(model_file)
    model_saved = True
    saved_mean_reward = mean_100ep_reward
    if model_saved:
    if print_freq is not None:
    logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
    load_variables(model_file)

    return act
    ActWrapper.save_act def save_act(self, path=None):
    """Save model to a pickle located at path"""
    if path is None:
    path = os.path.join(logger.get_dir(), "model.pkl")

    with tempfile.TemporaryDirectory() as td:
    save_variables(os.path.join(td, "model"))
    arc_name = os.path.join(td, "packed.zip")
    with zipfile.ZipFile(arc_name, 'w') as zipf:
    for root, dirs, files in os.walk(td):
    for fname in files:
    file_path = os.path.join(root, fname)
    if file_path != arc_name:
    zipf.write(file_path, os.path.relpath(file_path, td))
    with open(arc_name, "rb") as f:
    model_data = f.read()
    with open(path, "wb") as f:
    cloudpickle.dump((model_data, self._act_params), f)
    nature_cnn def nature_cnn(unscaled_images, **conv_kwargs):
    """
    CNN from Nature paper.
    """
    scaled_images = tf.cast(unscaled_images, tf.float32) / 255.
    activ = tf.nn.relu
    h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2),
    **conv_kwargs))
    h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs))
    h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs))
    h3 = conv_to_fc(h3)
    return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss sts-dev_spearman_cosine
0 0 - - 0.8810
0.08 100 0.4124 0.2191 -
0.16 200 0.108 0.0993 -
0.24 300 0.127 0.0756 -
0.32 400 0.0728 - -
0.08 100 0.0662 0.0683 -
0.16 200 0.0321 0.0660 -
0.24 300 0.0815 0.0584 -
0.32 400 0.049 0.0591 -
0.4 500 0.0636 0.0612 -
0.48 600 0.0929 0.0577 -
0.56 700 0.0342 0.0568 -
0.64 800 0.0265 0.0572 -
0.72 900 0.0406 0.0551 -
0.8 1000 0.039 0.0549 -
0.88 1100 0.0376 0.0551 -
0.96 1200 0.0823 0.0556 -

Framework Versions

  • Python: 3.10.13
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.3
  • PyTorch: 2.1.2
  • Accelerate: 0.32.1
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}