|
"""Tokenization classes for ProteinGLM.""" |
|
|
|
import os |
|
from typing import List, Optional, Union, Dict, Any |
|
from torch import TensorType |
|
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast |
|
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"} |
|
|
|
|
|
def load_vocab_file(vocab_file: str) -> List[str]: |
|
with open(vocab_file, "r") as f: |
|
lines = f.read().splitlines() |
|
return [line.strip() for line in lines] |
|
|
|
|
|
class ProteinGLMTokenizer(PreTrainedTokenizer): |
|
""" |
|
Constructs a ProteinGLM tokenizer. |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
model_input_names = ["input_ids", "attention_mask", "position_ids"] |
|
def __init__( |
|
self, |
|
vocab_file: str, |
|
unk_token: str = "<unk>", |
|
pad_token: str = "<pad>", |
|
mask_token: str = "<mask>", |
|
eos_token: str = "<eos>", |
|
model_max_length: int = 2048, |
|
additional_special_tokens: Optional[List[str]] = None, |
|
**kwargs, |
|
): |
|
self.all_tokens = load_vocab_file(vocab_file) |
|
self._id_to_token = dict(enumerate(self.all_tokens)) |
|
self._token_to_id = {tok: ind for ind, tok in enumerate(self.all_tokens)} |
|
|
|
if additional_special_tokens is None: |
|
additional_special_tokens = ['<pad>', '<mask>', '<gmask>', '<smask>', '<eod>', '<sop>', '<eop>', '<eos>', '<unk>'] |
|
|
|
super().__init__( |
|
unk_token=unk_token, |
|
pad_token=pad_token, |
|
mask_token=mask_token, |
|
eos_token=eos_token, |
|
model_max_length=model_max_length, |
|
additional_special_tokens=additional_special_tokens, |
|
**kwargs, |
|
) |
|
|
|
self.unique_no_split_tokens = self.all_tokens |
|
self._update_trie(self.unique_no_split_tokens) |
|
|
|
def _convert_id_to_token(self, index: int) -> str: |
|
return self._id_to_token.get(index, self.unk_token) |
|
|
|
def _convert_token_to_id(self, token: str) -> int: |
|
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token)) |
|
|
|
def _tokenize(self, text: str, **kwargs) -> List[str]: |
|
return text.split() |
|
|
|
def get_vocab(self) -> dict: |
|
base_vocab = self._token_to_id.copy() |
|
base_vocab.update(self.added_tokens_encoder) |
|
return base_vocab |
|
|
|
def token_to_id(self, token: str) -> int: |
|
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token)) |
|
|
|
def id_to_token(self, index: int) -> str: |
|
return self._id_to_token.get(index, self.unk_token) |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
sep = [self.eos_token_id] |
|
if token_ids_1 is None: |
|
if self.eos_token_id is None: |
|
return token_ids_0 |
|
else: |
|
return token_ids_0 + sep |
|
elif self.eos_token_id is None: |
|
raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!") |
|
return token_ids_0 + sep + token_ids_1 + sep |
|
|
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple: |
|
vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "tokenizer.model") |
|
with open(vocab_file, "w") as f: |
|
f.write("\n".join(self.all_tokens)) |
|
return (vocab_file,) |
|
|
|
@property |
|
def vocab_size(self) -> int: |
|
return len(self.all_tokens) |
|
|
|
def apply_chat_template( |
|
self, |
|
query, |
|
add_generation_prompt: bool = True, |
|
tokenize: bool = True, |
|
padding: bool = False, |
|
truncation: bool = False, |
|
max_length: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_dict: bool = False, |
|
tokenizer_kwargs: Optional[Dict[str, Any]] = None, |
|
add_special_tokens: bool = True, |
|
**kwargs, |
|
) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]: |
|
|
|
generation_prompt = "<gmask><sop><eos>" |
|
if isinstance(query, str): |
|
query = [query] |
|
prompt_query = [] |
|
if add_generation_prompt: |
|
for each in query: |
|
assert isinstance(each, str) |
|
prompt_query.append(generation_prompt+each) |
|
else: |
|
prompt_query = query |
|
if tokenize: |
|
output = self.batch_encode_plus( |
|
prompt_query, |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
return_tensors=return_tensors, |
|
is_split_into_words=True, |
|
add_special_tokens=False |
|
) |
|
if return_dict: |
|
return output |
|
else: |
|
return output["input_ids"] |
|
else: |
|
return prompt_query |