File size: 4,985 Bytes
2b867e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
"""Tokenization classes for ProteinGLM."""
import os
from typing import List, Optional, Union, Dict, Any
from torch import TensorType
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
def load_vocab_file(vocab_file: str) -> List[str]:
with open(vocab_file, "r") as f:
lines = f.read().splitlines()
return [line.strip() for line in lines]
class ProteinGLMTokenizer(PreTrainedTokenizer):
"""
Constructs a ProteinGLM tokenizer.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask", "position_ids"]
def __init__(
self,
vocab_file: str,
unk_token: str = "<unk>",
pad_token: str = "<pad>",
mask_token: str = "<mask>",
eos_token: str = "<eos>",
model_max_length: int = 2048,
additional_special_tokens: Optional[List[str]] = None,
**kwargs,
):
self.all_tokens = load_vocab_file(vocab_file)
self._id_to_token = dict(enumerate(self.all_tokens))
self._token_to_id = {tok: ind for ind, tok in enumerate(self.all_tokens)}
if additional_special_tokens is None:
additional_special_tokens = ['<pad>', '<mask>', '<gmask>', '<smask>', '<eod>', '<sop>', '<eop>', '<eos>', '<unk>']
super().__init__(
unk_token=unk_token,
pad_token=pad_token,
mask_token=mask_token,
eos_token=eos_token,
model_max_length=model_max_length,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
self.unique_no_split_tokens = self.all_tokens
self._update_trie(self.unique_no_split_tokens)
def _convert_id_to_token(self, index: int) -> str:
return self._id_to_token.get(index, self.unk_token)
def _convert_token_to_id(self, token: str) -> int:
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
def _tokenize(self, text: str, **kwargs) -> List[str]:
return text.split()
def get_vocab(self) -> dict:
base_vocab = self._token_to_id.copy()
base_vocab.update(self.added_tokens_encoder)
return base_vocab
def token_to_id(self, token: str) -> int:
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
def id_to_token(self, index: int) -> str:
return self._id_to_token.get(index, self.unk_token)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
sep = [self.eos_token_id]
if token_ids_1 is None:
if self.eos_token_id is None:
return token_ids_0
else:
return token_ids_0 + sep
elif self.eos_token_id is None:
raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!")
return token_ids_0 + sep + token_ids_1 + sep # Multiple inputs always have an EOS token
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple:
vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "tokenizer.model")
with open(vocab_file, "w") as f:
f.write("\n".join(self.all_tokens))
return (vocab_file,)
@property
def vocab_size(self) -> int:
return len(self.all_tokens)
def apply_chat_template(
self,
query,
add_generation_prompt: bool = True,
tokenize: bool = True,
padding: bool = False,
truncation: bool = False,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_dict: bool = False,
tokenizer_kwargs: Optional[Dict[str, Any]] = None,
add_special_tokens: bool = True,
**kwargs,
) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]:
generation_prompt = "<gmask><sop><eos>"
if isinstance(query, str):
query = [query]
prompt_query = []
if add_generation_prompt:
for each in query:
assert isinstance(each, str)
prompt_query.append(generation_prompt+each)
else:
prompt_query = query
if tokenize:
output = self.batch_encode_plus(
prompt_query,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors,
is_split_into_words=True,
add_special_tokens=False
)
if return_dict:
return output
else:
return output["input_ids"]
else:
return prompt_query |